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A B S T R A C T

Cortical electro-encephalography (EEG) served as the clinical reference for monitoring unconsciousness during
general anesthesia. The existing EEG-based monitors classified general anesthesia states as underdosed,
adequate, or overdosed, lacking predictive power due to the absence of transition phases among these states.
In response to this limitation, we undertook an analysis of the EEG signal during isoflurane-induced general
anesthesia in mice. Adopting a data-driven approach, we applied signal processing techniques to track 𝜃- and
𝛿-band dynamics, along with iso-electric suppressions. Combining this approach with machine learning, we
successfully developed an automated algorithm. The findings of our study revealed that the dampening of the
𝛿-band occurred several minutes before the onset of significant iso-electric suppression episodes. Furthermore,
a distinct 𝛾-frequency oscillation was observed, persisting for several minutes during the recovery phase
subsequent to isoflurane-induced overdose. As a result of our research, we generated a map summarizing
multiple brain states and their transitions, offering a tool for predicting and preventing overdose during general
anesthesia. The transition phases identified, along with the developed algorithm, have the potential to be
generalized, enabling clinicians to prevent inadequate anesthesia and, consequently, tailor anesthetic regimens
to individual patients.
1. Introduction

Over the past century, the analysis of cortical electroencephalogram
(EEG) data has led to comprehensive classifications of brain states.
In the last five decades, advancements in spectral analysis and signal
segmentation of EEG data have matured, offering valuable insights
into the instantaneous dynamics of brain activity during sleep (Gorgoni
et al., 2020), coma (Maas et al., 2017; André-Obadia et al., 2018), and
general anesthesia (GA) (Purdon et al., 2015; Constant and Sabourdin,
2012). EEG is now a routine tool for monitoring the adequacy, or depth,
of anesthesia in humans.

While recent data has highlighted associations between anesthetic
overdose and post-operative complications (Soehle et al., 2015; Fritz
et al., 2016a), the impact of real-time monitoring overdose alerts
provided to anesthesiologists on improving outcomes remains con-
troversial (Wildes et al., 2019; Avidan et al., 2008; Whitlock et al.,
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2011). These observations underscore the need for preventing hypnotic
overdose to enhance outcomes. This prevention, rather than correction
after the fact, necessitates a new paradigm for EEG analysis.

During anesthesia with agents like propofol or halogenated gases
such as sevoflurane or isoflurane, the brain undergoes transitions char-
acterized by the presence of frontal 𝛼-oscillations in the 8–12 Hz
range (Buzsáki, 2006). Increasing hypnotic concentration can lead to
the disappearance of 𝛼-oscillations, resulting in partial suppressions of
the 𝛼-band known as 𝛼-suppressions (𝛼S) (Cartailler et al., 2019; Sun
and Holcman, 2022). In contrast, in rodents, general anesthesia (GA) is
characterized by the presence of 𝜃- and 𝛿-oscillations (Guidera et al.,
2017). Further increases in hypnotic concentration in both humans
and rodents can result in iso-electric suppressions (IES), representing
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profound anesthesia and being associated with post-anesthetic compli-
cations such as delirium and cognitive dysfunction in humans (Fritz
et al., 2016b; Soehle et al., 2015-04-28).

Post-operative delirium has also been observed in mice (Peng et al.,
2016), but its connection to IES is not thoroughly investigated. Tem-
poral relationships have been established between EEG patterns in
humans, where 𝛼-band suppressions precede IES appearance in patients
anesthetized with propofol (Cartailler et al., 2019). This allows for the
prediction of patients most sensitive to overdose within the first 10 min
of GA with propofol (Sun and Holcman, 2022). However, a similar
approach has not been developed for GA induced by halogenated gases,
given the different EEG signatures they produce (Kenny et al., 2014).
Thus, our investigation focused on identifying temporal relationships
between EEG patterns in isoflurane-induced GA.

Various computational methods are employed for EEG analysis,
including wavelets (Jaffard et al., 2001; Worrell et al., 2012), thresh-
olding methods (Donoho and Johnstone, 1994), and empirical mode
decomposition (Ho and Hung, 2020). Separating oscillatory compo-
nents from spectral decay provides valuable insights into neurophysi-
ological signals (Wen and Liu, 2016; Donoghue et al., 2020; Ouyang
et al., 2020), especially for EEG recordings during general anesthe-
sia (Brake et al., 2021). Based on EEG and electromyogram (EMG)
recordings during isoflurane-induced GA in mice, we developed here
a signal-processing approach coupled with machine learning. This in-
tegration allowed us to identify relevant patterns and assess their
predictive power. Our EEG time-frequency analysis relies on irregular
sampling auto-spectral analysis (IRASA) (Wen and Liu, 2016), effec-
tively isolating oscillatory components from background spectral decay.
By computing the relative power of frequency bands and the time
proportion of IES, we uncovered multiple EEG and EMG states, reveal-
ing specific robust transitions between them. This led us to propose
a state chart representing brain states and their associated transitions,
which could be utilized to assess and predict the depth of anesthesia in
isoflurane-induced GA.

2. Methods

2.1. Animal care and ethics statement

All protocols were approved by the Institutional Animal Care and
Use Committee at the University of California, San Francisco, and
Gladstone Institutes, with institutional oversight. Experiments were
conducted according to ARRIVE guidelines (Kilkenny et al., 2012)
and recommendations to facilitate transparent reporting (Landis et al.,
2012). Experiments were approved by the Institutional Animal Care
and Use Committee under IACUC protocol number AN189059-02N. The
present experiments were performed in a AAALAC-accredited facility.
All biological variables were documented. Adult C57BL/6J mice were
used for each experiment. Mice of both sexes were used for the current
study. Precautions were taken to minimize distress and the number
of animals used in each set of experiments. Mice were housed in a
pathogen-free barrier facility on a standard 12-h light/dark cycle with
ad libitum access to food and water.

2.2. Surgical implantation of the EEG and EMG devices and EEG recordings

Seventeen adult mice underwent surgical implantation of EMG
and EEG devices for chronic electromyogram and electrocorticogram
recordings. Mice were anesthetized with vaporized isoflurane (3%
induction, 1−2% maintenance, carried by 100% O2 at a flow rate
f 2 L/min) and placed under a stereotaxic frame for chronic EEG
mplants as previously described in Holden et al. (2021) and Cho et al.
2022). Briefly, an EEG screw was implanted in the skull overlying
he cortical region at the following coordinates: 1.0 mm anterior from
regma and 2.5 mm lateral from the midline (Kirkcaldie et al., 2012). A
round screw was placed overlying the cerebellum (0.5–1 mm posterior
2

to Lambda and 0.5–1 mm lateral to midline). The coordinates are
computed from the primary somatosensory region (S1). The EMG
electrode was placed in the deep parasagittal cervical muscles. The
skin was closed over the entire apparatus, which was sealed with
dental cement and Vetbond tissue adhesive. For analgesia, topical
lidocaine ointment (5%) was applied prior to incision and extended-
release buprenorphine (0.05–0.1 mg/kg s.c.) was administered prior to
recovery from anesthesia. Mice recovered for 5–7 days after surgery
before the start of recordings.

Two types of EEG devices were used: purchased wireless telemetry
devices (HD-X02, Data Sciences International (DSI), St. Paul, MN) and
custom-made wired EEG devices made in the Paz lab using cortical
screws connected to a Millmax device (Cho et al., 2022). Wireless
recordings were acquired using Ponemah software (DSI); wired record-
ings were acquired using Synapse software (Tucker Davis Technolo-
gies).

2.3. Protocols using isoflurane-induced GA

GA was induced in the mobile isoflurane anesthesia induction cham-
bers. Mice were placed into the plastic chambers, and EEG was recorded
for 5 min before vaporized isoflurane carried by 100% O2 at a flow
rate of 2L/min was turned on. There were three different protocols for
isoflurane-induced GA. In the first, the isoflurane dose was gradually
increased from 0.5% to 2% every 5 min with 0.5% increments (𝑛 = 14),

hile in the other two, the dose was fixed at 1% (𝑛 = 10) and 1.5%
𝑛 = 9) (Fig. 1A–B). Vaporized isoflurane was turned off after 20 min.

Mice were kept in the plastic induction chamber until full recovery and
visible unimpaired movement around the plastic chamber, usually no
more than 20 min. Mice were returned to home cages at the end of
the experiment. These protocols were chosen in order to characterize
and compare the mouse EEG response to isoflurane under constant
light sedation (1% protocol), constant high sedation (1.5% protocol),
and increasing concentration from light to high sedation (incremented
protocol). Due to experimental constraints, some mice were used for
several protocols, with at least one resting day between two sessions.
Eight mice underwent the incremented and 1.5% protocol, four mice
underwent the step protocol alone, three mice underwent the 1%
protocol, and two mice underwent the 1% protocol three time, the 1.5%
protocol once, and the incremented protocol once. Although we ob-
served significant intra-individual variability in responses to isoflurane,
we did not observe group differences to suggest a major confounding
effect of repeated isoflurane exposure (Supplementary section S1.7).

2.4. EEG data and pre-processing

The EEG signal 𝑆(𝑡) was digitized at a sampling frequency 𝑓𝑠 =
500 Hz. We first identified artifacts, like regions where the signal is
constant and equal to 0 due to no signal being recorded. Regions with
abnormally high values were also identified as artifacts using hysteresis
thresholding with a low threshold of 0.08 μV and a high threshold
of 1200 μV (Canny, 1986). We labeled the artifact regions as NaN
(not containing any significant signal to be processed). Three EEG
recordings (one per anesthesia protocol) were excluded because they
contained too many artifacts.

2.5. Signal processing tools

Signal processing notations used throughout the Methods section
are defined here. For some computations specified below, the signal
𝑆 was band-pass filtered using a Butterworth forward–backward fil-
ter (Butterworth, 1930) of order 1 (effective order 4) in a frequency
domain [𝑓1, 𝑓2], where the frequencies 𝑓1 and 𝑓2 are specified in
Table 1. A sliding window 𝑊 (𝑡) centered at time 𝑡 and of width 𝑤
𝑤
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Fig. 1. Time-frequency segmentation of EEG recorded during isoflurane-induced GA in mice. (A) Experimental setting for a single-electrode EEG recording. (B) Three protocols
used for isoflurane-induced GA. (C) Suppression detection leading to (C1) IES (red), (C2) 𝜃-suppression (yellow), (C3) 𝛿-suppression (green). Segments where the signal is lower
than a threshold (dotted lines) are labeled as suppressions (see Methods). (D) Time spent in each suppression type in a sliding time window. (E) Suppression ratios across the EEG
recording, with the delay to first IES 𝜏1IES, the IES ratio exceeds threshold 𝑇𝑆 at time 𝜏𝑆 , and relative power of the 𝜃 and 𝛿 rhythms. (F) Distribution of delay from GA induction
to first IES 𝜏1IES. (G) Distribution of cumulative time spent in IES 𝛥IES. (H) Delay from GA induction to the first 𝜃-suppression occurrence, and first IES occurrence respectively.
The black lines link two points coming from the same recording. *𝑃 < 0.05, **𝑃 < 0.001, two-sided Wilcoxon-rank U test.
was used to compute statistical markers locally in time. For 𝑤 ∈ R+

and 𝑡 > 𝑤
2 , we use the notation

𝑊𝑤(𝑡) =
[

𝑡 − 𝑤
2
, 𝑡 + 𝑤

2

]

(1)

We used an overlap between two sliding windows of 𝑤
2 or 0. Chosen

values of 𝑤 and overlap are specified in Table 1.

2.5.1. EEG segmentation of suppression periods
To detect IES, regions where the amplitude of the EEG was smaller

than the threshold 𝑇IES for at least 1 s were identified. The threshold
chosen was

𝑇 = 𝑟 RMS ,
3

IES IES EEG
where 𝑟IES = 0.7 and RMSEEG is the Root Mean Square of the entire
recording:

RMSEEG =

√

1
𝑇 ∫

𝑇

0
𝑆2(𝑡)d𝑡.

The threshold was chosen using a novel heuristic, see supplementary
section 2.1, Fig. S1, and Fig. S2. Two detected suppressions separated
by less than 0.5 s were merged as one single suppression (Cartailler
et al., 2019). The detection of IES is shown in Fig. 1C1.

Similarly, suppressions of the 𝜃- (resp. 𝛿-) rhythm were identi-
fied (Cartailler et al., 2019) directly on the raw EEG signal, without
the spectral decomposition (Section 2.7). The dynamics of the 𝛿− and
𝜃− bands were computed directly on the EEG signal, without using
the IRASA decomposition. Similarly for the suppression episodes that
were segmented directly on the EEG, without using the IRASA spectral
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Table 1
Main parameters.

Parameter Symbol Value

Sampling frequency (Hz) 𝑓𝑠 500 Hz

Root Mean Square of the EEG RMSEEG
Relative IES threshold 𝑟IES 0.7
Threshold for IES detection 𝑇IES = 𝑟IESRMSEEG
Threshold for 𝜃 suppressions detection 𝑇𝜃S = 0.2RMSEEG
Threshold for 𝛿 suppressions detection 𝑇𝛿S = 0.2RMSEEG
Suppression ratios time window width 20 s
Suppression ratios time window overlap 10 s
IES threshold 𝑇𝑆 0.25

Power ratio time window width 20 s
Power ratio time window overlap 0 s
Threshold for 𝛿 relative power 𝑇𝛿 0.15
Threshold for 𝜃 relative power 𝑇𝜃 0.1
Power ratio of the 𝛿-band 𝑃𝛿 (𝑡)
Power ratio of the 𝜃-band 𝑃𝜃 (𝑡)

Spectral time window width 𝑊𝑡 60 s
Spectral time window overlap 30 s
Coefficients of the 1/f-fit 𝑎𝑡 , 𝑐𝑡
Exponent of the 1/f-fit 𝑝𝑡
Rhythm amplitude of the 𝛿 band 𝑏𝛿 (𝑡)
Center frequency 𝑓𝛿 (𝑡)
standard deviation 𝜎𝛿(𝑡)
Rhythm amplitude of the 𝜃 band 𝑏𝜃 (𝑡)
Center frequency 𝑓𝜃 (𝑡)
Standard deviation 𝜎𝜃(𝑡)

decomposition. In brief, the signal was first band-pass filtered within
the 5−10 Hz (resp. 2.5−4.5 Hz) band. Suppression segments where
he amplitude of the filtered signal was below the threshold 𝑇𝜃S =
.2 RMSEEG (resp. 𝑇𝛿S = 0.2 RMSEEG) were labeled as 𝜃- (resp. 𝛿-) sup-

pressions (Fig. 1C2–3). Although the value 𝑇 = 0.2 for the suppression
hreshold was chosen empirically, this value is comparable to the one
hosen in Sun and Holcman (2022) and Cartailler et al. (2019). We
urther tested several values and retain the one that best detected the
and suppression, limiting false detection of non-suppression episodes.
ecause IES can also be detected as 𝜃− and 𝛿− suppressions, segments
etected as IES were removed from 𝜃 and 𝛿 suppressions. A general
rinciple to assign optimal value to threshold remains an open question.

.5.2. Estimating suppression ratios
We define the iso-electric suppression Ratio (IESSR) as the propor-

ion of time that the EEG signal spends in IES inside a sliding window
𝑅(𝑡) of width 𝑅 (Eq. (1)), that is

ESSR(𝑡) =
Duration of IES in 𝑊𝑅(𝑡)

𝑅
. (2)

imilarly, we define the 𝜃-Suppression Ratio 𝜃SR as

SR(𝑡) =
Duration of 𝜃 suppressions in 𝑊𝑅(𝑡)

𝑅
. (3)

Finally, the 𝛿-Suppression Ratio is

𝛿SR(𝑡) =
Duration of 𝛿 suppressions in 𝑊𝑅(𝑡)

𝑅
, (4)

These suppression ratios are computed on sliding time windows of
width 𝑅 = 20 s and an overlap of 10 s (Fig. 1E). Notably, the iso-
electric suppression ratio is very similar to the commonly used burst
suppression ratio (Rampil et al., 1988).

2.5.3. Detecting strong IES episodes
Segments where the IES ratio (Eq. (2)) was high were collected. IES

at time 𝑡 is considered strong if more than a threshold 𝑇𝑆 = 25% of the
time window centered in 𝑡 is detected as IES:

IESSR(𝑡) > 𝑇𝑆 . (5)
4

This threshold was chosen empirically after a visual inspection of EEG. w
Therefore, the first strong IES time 𝜏S is the first time at which
IESSR(𝑡) > 𝑇𝑆 on consecutive time windows for at least 40 s.

𝜏S = min
𝑡 ∈ [𝜏start

Iso , 𝜏stop
rec ]

{𝑡− 𝜏start
Iso | for all 𝑡′ ∈ [𝑡, 𝑡+40𝑠], IESSR(𝑡′) > 𝑇S}, (6)

where 𝜏start
Iso is the beginning of induction time, and 𝜏stop

rec is the end of
ecording time.

.6. Computing frequency power ratios from EEG and detecting present
requency rhythms

.6.1. Computing power ratios of the 𝛿- and 𝜃-bands
The power of the low-pass filtered EEG 𝑆20 under 20 Hz, the

and-pass filtered signal 𝑆𝜃 in 5−10 Hz, and 𝑆𝛿 band-pass filtered in
.5−4.5 Hz were computed. 𝑆20, 𝑆𝜃 and 𝑆𝛿 are taken directly from the
EG, without the spectral decomposition developed in Section 2.7. The
ssociated powers are computed in the sliding time window 𝑊𝑅(𝑡):

EEG20(𝑡) =
1
𝑅 ∫𝑊𝑅(𝑡)

𝑆2
20(𝑠)d𝑠

𝑝𝜃(𝑡) =
1
𝑅 ∫𝑊𝑅(𝑡)

𝑆2
𝜃 (𝑠)d𝑠

𝑝𝛿(𝑡) =
1
𝑅 ∫𝑊𝑅(𝑡)

𝑆2
𝛿 (𝑠)d𝑠,

he 𝜃- and 𝛿- power ratios are defined by

𝜃(𝑡) =
𝑝𝜃(𝑡)

𝑝EEG20(𝑡)
, 𝑃𝛿(𝑡) =

𝑝𝛿(𝑡)
𝑝EEG20(𝑡)

(7)

and computed over a sliding windows 𝑊𝑅(𝑡) with 𝑅 = 20 s and no
overlap (Eq. (1), Fig. 1E).

2.6.2. Activity of frequency bands
To assess whether the 𝜃- or 𝛿- rhythm is prominent, its power ratio

s computed (Eq. (7)) over the sliding windows defined above (Eq. (1))
nd compare it to a threshold 𝑇𝜃 = 0.1 or 𝑇𝛿 = 0.15. The 𝜃 rhythm

(respectively 𝛿 rhythm) is considered to be prominent at time 𝑡 if 𝑃𝜃 >
𝑇𝜃 (respectively 𝑃𝛿 > 𝑇𝛿) for at least 1 min. Conversely, the dampening
time of the 𝜃 rhythm (respectively 𝛿 rhythm) is defined as when 𝑃𝜃 < 𝑇𝜃
(respectively 𝑃𝛿 < 𝑇𝛿) for at least 1 min. For instance in Fig. 1E, the
𝛿 rhythm is absent during the 0−11 min period, prominent during
the 11−22 min period, dampened during the 22−27 min period, and
prominent during the 27−33 min period. The first time of 𝛿 appearance
𝜏app
𝛿 is defined as the first time at which the 𝛿 rhythm is prominent since
he beginning of anesthesia:
app
𝛿 = min

𝑡∈[𝜏start
Iso ,𝜏stop

rec ]
{𝑡 − 𝜏start

Iso | for all 𝑡′ ∈ [𝑡, 𝑡 + 1 min], 𝑃𝛿(𝑡′) > 𝑇𝛿}, (8)

here 𝜏start
Iso is the beginning of induction time and 𝜏stop

rec is the end time
f the recording. The first time of 𝜃 appearance is not defined, because
his rhythm is already prominent before the beginning of anesthesia.
imilarly, the time of dampening of the 𝜃 and 𝛿 rhythm are defined as
ollows:
disp
𝜃 = min

𝑡∈[𝜏start
Iso ,𝜏stop

rec ]
{𝑡 − 𝜏start

Iso | for all 𝑡′ ∈ [𝑡, 𝑡 + 1 min], 𝑃𝜃(𝑡′) < 𝑇𝜃}, (9)

disp
𝛿 = min

𝑡∈[𝜏app
𝛿 ,𝜏stop

rec ]
{𝑡 − 𝜏start

Iso | for all 𝑡′ ∈ [𝑡, 𝑡 + 1 min], 𝑃𝛿(𝑡′) < 𝑇𝛿}. (10)

.7. Extracting dominant frequency rhythms present in the EEG

To quantify the persistence of a frequency rhythm present in the
EG signal,an algorithm (Wen and Liu, 2016) which separates the
ower spectrum into 1∕𝑓 and oscillatory components was adapted. The
ovelty consists in using this decomposition in sliding time windows,
hich results in a decomposition that is continuous over time.
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Fig. 2. EEG Spectral analysis applied to isoflurane-induced GA in mice on a single one-minute time window (A), and along the entire procedure (B–G). The Power Spectral
Density (PSD) of one minute of EEG is computed (A1), and separated into the 1/f-component (A2) and the oscillatory component (A3) (Eq. (12)). The 𝜃- (pink) and 𝛿- (black)
band characteristics of this time window are obtained by fitting Gaussians to the oscillatory component (A4). This separation is performed on successive time windows along the
procedure, resulting in a continuous estimation of the spectral parameters. (B) EEG recording on which the estimation is applied. (C) Anesthesia protocol. (D) Spectrogram of the
entire EEG recording. (E) Estimated 1/f component. (F) Exponent of 1/f component. (G) Estimated oscillatory component and tracked 𝜃 and 𝛿 rhythms.
2.7.1. Spectral decomposition on a sliding time window
The power spectral density PSD𝑡,𝑤(𝑓 ) of the signal 𝑆 is computed

over the time window 𝑊𝑤(𝑡) (Eq. (1)) and can be decomposed as
follows:

PSD𝑡,𝑤(𝑓 ) = 1/f𝑡,𝑤(𝑓 ) + Osc𝑡,𝑤(𝑓 ),where

1/f𝑡,𝑤(𝑓 ) =
𝑎𝑡

𝑐𝑡 + 𝑓 𝑝𝑡
, and (11)

Osc𝑡,𝑤(𝑓 ) =
∑

1≤𝑘𝑡≤𝑁𝑡

𝑏𝑘𝑡 exp
⎛

⎜

⎜

⎝

−
(𝑓 − 𝑓𝑘𝑡 )

2

2𝜎2𝑘𝑡

⎞

⎟

⎟

⎠

,

see Fig. 2A and Buzsáki (2006). The first component 1∕𝑓𝑡,𝑤 captures
the frequency decay of the power spectral density and is characterized
by the amplitude 𝑎𝑡, the exponent 𝑝𝑡 and the correction term 𝑐𝑡, which
we estimate, as discussed below. We added a correction term 𝑐𝑡 in
the denominator of the 1/f-model, leading to the term 𝑎𝑡

𝑐𝑡+𝑓𝑝𝑡 , which
now converges to a finite value when the frequency 𝑓 tends to zero.
This correction term allows us to fit the 1/f-component until the origin
and accounts for the finite power spectral densities of the present EEG
recordings. Second, introducing the correction term 𝑐𝑡 divides by 15 the
approximation error, see supplementary section S2.2, Fig. S3 and Fig.
S4. The second component Osc𝑡,𝑤 accounts for the oscillatory part of the
signal and can be decomposed as a sum of 𝑁𝑡 Gaussians (Fig. 2A3–4).
Each Gaussian peaks at the main frequency 𝑓𝑘𝑡 with a standard devia-
tion 𝜎𝑘𝑡 and amplitude 𝑏𝑘𝑡 . The oscillatory parameters to be estimated
are the number 𝑁𝑡 and the Gaussian parameters {𝑏𝑘𝑡 , 𝑓𝑘𝑡 , 𝜎𝑘𝑡}1≤𝑘𝑡≤𝑁𝑡

.
In practice, there are at most two main components in the 0−20 Hz
domain: the 𝜃 and 𝛿 bands, so that

Osc𝑡,𝑤(𝑓 ) = 𝑏𝛿(𝑡) exp
(

−
(𝑓 − 𝑓𝛿(𝑡))2

)

+ 𝑏𝜃(𝑡) exp
(

−
(𝑓 − 𝑓𝜃(𝑡))2

)

. (12)
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2.7.2. Parameters estimation on a time window
Estimation of the 1/f and oscillatory parameters of the EEG signal 𝑆

over the time window 𝑊𝑤(𝑡) was done by a fully automated algorithm
using the steps described below.

1. The power spectral density of the signal 𝑆 was computed. (Fig.
S5) over 𝑊𝑤(𝑡) using Welch’s method (Welch, 1967) (with a
5 s sub-window). The power spectral density values in the
0.2−15 Hz range were then saved. We used a frequency range
up to 15 Hz, to capture the 𝛿 and 𝜃 activities of interest, and
to account for the 1/f decay. Due to the computational cost of
the spectral decomposition, we did not use any frequency above
15 Hz. However, since computing the power ratio is not costly,
we used a higher upper bound of 20 Hz for computing power
ratios (Methods Section 2.6.1).

2. The IRASA method (Wen and Liu, 2016) was used to estimate the
1/f component of the power spectral density in the 0.2−15 Hz
range. It consists of applying several scaling factors ℎ on the
signal 𝑆, computing the corresponding power spectral densities,
and the median of the power spectral densities provides the 1∕𝑓
component. In practice, the signal 𝑆 in 𝑊𝑤(𝑡) was up-scaled
and down-scaled using factors ℎ𝑖 between 1.1 and 1.9 with a
0.05 increment and their reciprocals 1∕ℎ𝑖. Then, the geometrical
mean PSD𝐺𝑀(𝑖) of PSDℎ𝑖 and PSD1∕ℎ𝑖 was computed for each i.
Finally, the 1∕𝑓 estimate was the median PSD𝑚 of the PSD𝐺𝑀(𝑖)
for all i (Fig. S5C, light blue curve). The parameters 𝑎𝑡, 𝑝𝑡, and
𝑐𝑡 were obtained by fitting PSD𝑚 on the 0.2−15 Hz interval
in the log–log scale (Fig. S5C, red curve). The YASA python
library (Vallat and Walker, 2021) was used to implement the
IRASA method, and the SciPy Python module (Virtanen et al.,
2020) to fit parameters 𝑎 , 𝑝 , and 𝑐 .
𝑡 𝑡 𝑡
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3. The oscillatory component was computed by removing the es-
timated 1/f component from the power spectral density (Fig.
S5D):

Ôsc𝑡,𝑤(𝑓 ) = PSD𝑡,𝑤(𝑓 ) − 1̂/f𝑡,𝑤(𝑓 ), (13)

where 1̂/f𝑡,𝑤(𝑓 ) =
𝑎𝑡

𝑐𝑡 + 𝑓 𝑝𝑡
.

4. The oscillatory parameters 𝑁𝑡 and {𝑏𝑘𝑡 , 𝑓𝑘𝑡 , 𝜎𝑘𝑡}1≤𝑘𝑡≤𝑁𝑡
were es-

timated by fitting a sum of Gaussian functions to the oscillatory
component Ôsc𝑤,𝑡(𝑓 ) on the frequency domain 1−15 Hz. This
part is a generalization of a method developed in Lindner et al.
(2015).

5. Gaussian components where the standard deviation 𝜎𝑘𝑡 was
either smaller than 0.2 or larger than 2 were discarded. In
addition, Gaussian components with too small amplitude 𝑏𝑘𝑡 ≤
std(Ôsc𝑡,𝑤(𝑓 )) were discarded. The thresholds 0.2 and 2 were

chosen empirically and the threshold std(Ôsc𝑡,𝑤(𝑓 )) was inspired
by Donoghue et al. (2020).

6. At most one Gaussian was selected for which center frequency
𝑓𝑘𝑡 falls into the 𝜃 (resp. 𝛿) 4−10 Hz (resp. 2−4 Hz) band
(Fig. S5E). When there were several detected Gaussians that
fell into one frequency band, the Gaussian component with the
largest area 𝑏𝜃 = max

𝑓𝑘𝑡∈[5,10]Hz
𝑏𝑘𝑡𝜎𝑘𝑡 (resp. 𝑏𝛿 = max

𝑓𝑘𝑡∈[2,4]Hz
𝑏𝑘𝑡𝜎𝑘𝑡 ) was

selected.

When no Gaussian component was present in one of the band domains,
we considered that there was no prominent rhythm in this band for
this time window. In the rare cases where two Gaussians had the same
maximum area, we selected the one for which the center frequency 𝑓𝑘𝑡
was closest to the median frequency, i.e 7.5 Hz for the 𝜃-band, 3 Hz for
the 𝛿-band.

2.7.3. Rhythm tracking along GA
Section 2.7.2 estimated the Gaussian 𝐺𝜃(𝑓, 𝑡) (resp. 𝐺𝛿(𝑓, 𝑡)) of the

𝜃- (resp. 𝛿-) rhythm in one time window of width 𝑤 = 60 s and centered
at time 𝑡. To define a continuous estimation for the time-varying 𝜃 and
𝛿 rhythms, the windows 𝑊𝑤(𝑡𝑖) at discretized times 𝑡𝑖 with a 𝑤

2 step
are used. To define a continuous curve, from these discretized windows
𝑊𝑤(𝑡𝑖), the band Gaussian on 𝑊𝑤(𝑡𝑖), 𝑖 ∈ N is estimated as described in
Section 2.7.2.

When a Gaussian is detected in the consecutive frames 𝑊𝑤(𝑡𝑖) and
𝑤(𝑡𝑖+1), it is interpolated by a straight line the center frequencies

𝑓band(𝑡𝑖), 𝑓band(𝑡𝑖+1)) in the time interval [𝑡𝑖, 𝑡𝑖+1]. The same procedure
is also applied to the standard deviation. However, when a band
Gaussian is detected in 𝑊𝑤(𝑡𝑖) but none are detected in either 𝑊𝑤(𝑡𝑖−1)
or 𝑊𝑤(𝑡𝑖+1), it is not interpolated and the band rhythm is considered
not significant.

These steps are applied for both the 𝜃 and 𝛿 bands. Finally, to
further quantify the dynamics of each rhythm, the dynamics of the
Gaussian width were followed. The lower and upper curves centered at
the frequency 𝑓 (𝑡) of the fitted Gaussian, each at a standard deviation
𝜎(𝑡) distance were applied so that
upb(𝑡) = 𝑓b(𝑡) + 𝜎b(𝑡)

lowb(𝑡) = 𝑓b(𝑡) − 𝜎b(𝑡),
(14)

where 𝑏 ∈ {𝜃, 𝛿}. Thus the distance between the two curves is precisely
twice the variance |upb(𝑡) − lowb(𝑡)| = 2𝜎b(𝑡). See Fig. 2G for an
example of continuous rhythm tracking, with 𝑤 = 1 min.

2.7.4. Decay of 𝜃 center frequency during induction
A common behavior of the 𝜃 rhythm was observed in all recordings.

At baseline, the 𝜃 rhythm is prominent, and its center frequency 𝑓𝜃 is
stable around 8 Hz. Then, shortly after the beginning of anesthesia, 𝑓𝜃
decreases rapidly for several minutes (Fig. 2). The start time of the 𝑓𝜃
decay 𝜏decay

𝜃 is defined as:

𝜏decay = inf{𝑡 > 𝜏start
| for all 𝑡′ ∈ [𝑡, 𝑡 + 5 min] 𝑓 (𝑡′) < 𝑓 (𝑡)}. (15)
6

𝜃 Iso 𝜃 𝜃
2.7.5. Computing the slope of the 𝜃-decay
To estimate the slope of the curve 𝑓𝜃(𝑡), we first used the time

𝜏decay
𝜃 (Eq. (15)) for which the maximum power of the frequency 𝑓𝜃(𝑡)

is achieved following anesthesia induction. We used the IRASA decom-
position of the signal into the 1/f-decay and oscillatory component. We
estimated the slope for each recording by fitting a linear regression to
the 𝜃 center frequency 𝑓𝜃 on the time interval [𝜏decay

𝜃 , 𝜏decay
𝜃 + 2𝑚𝑖𝑛].

The slopes were then average per protocol.

2.8. Identifying loss and return of movement from EMG

Loss and return of movement were identified by visually inspecting
the EMG (Fig. S6). Loss of movement is easily recognizable on the EMG
as a switch from active to flat signal. Similarly, the return of movement
is a switch from flat to active signal. Notably, the EMG recordings
contain artifacts, probably from respiration and electrocardiogram.
These artifacts were of very low amplitude and therefore did not impact
LOM and ROM identification.

2.9. Logistic regression analysis

A logistic regression approach with 𝑙2 regularization (Bishop and
Nasrabadi, 2006) and a regularization constant C = 1 were used to
evaluate the contribution of several parameters to the prediction of
significant time spent in IES. The criterion for class separation was
chosen with the 𝛾 rebound phenomena, which happens for recordings
with more than 30 s in IES (Section 3.3). The dataset was thus divided
into a positive class (total time spent in IES is more than 30 s) and a
negative class (total time spent in IES is less than 30 s).

The dataset was separated into training and validation sets using
a stratified group k-fold strategy: this strategy ensures that recordings
from one individual are not split between the train and validation set
(group) and that the validation sets of all folds have equivalent propor-
tions of positive and negative labels (stratified). The scikit-learn python
library (Pedregosa et al., 2011) was used with a 4 folds separation, due
to the limited number of recordings in the negative class.

The logistic regression models were fed timestamps of events iden-
tified in Section 3.4. Due to constraints on the various durations, each
time feature was normalized given to the model in the following way:

𝜏∗ = log
(

1 + 100
𝜏 − 𝜏start

Iso + 0.1

)

, (16)

where 𝜏 is the time feature computed by our algorithm, 𝜏 ∗ is the
feature fed to the logistic regression model, and 𝜏start

Iso is the time of the
eginning of anesthesia. This choice was inspired by Sun and Holcman
2022).

.10. 𝛾-rebound identification

The 𝛾-rebound recordings were identified when the 𝛾-power was
significantly larger during recovery than in the rest of the recording
for at least 2 min, using a threshold 𝑇𝛾 on the power defined by

𝑇𝛾 = 3 RMSBL,

MSBL = RMS((𝑝𝛾 (𝑡))0≤𝑡≤𝜏start
Iso

),

where 𝑝𝛾 (𝑡) is the power of the filtered 50−70 Hz EEG signal, computed
on sliding windows of width 0.2 s and zero overlap and 𝜏start

Iso is the
instant where the isoflurane starts to be administered.
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Fig. 3. Influence of anesthesia protocols on spectral dynamics. (A) Representative EEG examples of three GA protocols (B). (C) Spectrograms.(D) Oscillatory components and
automatically tracked 𝜃- (gray and black) and 𝛿- (pink) rhythms. (E) Average exponent 𝑝𝑡 of the 1/f-component 𝑎𝑡

𝑐𝑡+𝑓 𝑝𝑡
per protocol. (F) Average power ratios 𝑃𝛿 (green) and 𝑃𝜃

(yellow) per protocol. (G) Examples of suppression ratios computed for the 𝛿-band (𝛿SR), 𝜃-band (𝜃SR) and the IES (IESSR). Error bands indicate the 95% confidence intervals
computed using the 𝑡-distribution.
3. Results

3.1. Higher isoflurane concentration increases IES incidence

To evaluate whether the GA protocol could impact the appearance
and distribution of IES, we implemented three different protocols with
varying isoflurane concentrations. In the first, which we refer to as
the incremented protocol, the isoflurane concentration was gradually
increased from 0.5% to 2% every 5 min in 0.5% increments (n = 13).
In the other protocols the isoflurane concentration was fixed at 1% (n
= 9), and 1.5% (n = 8) (Fig. 1A–B). We refer to these protocols as the
1% protocol and the 1.5% protocol respectively.

To detect IES and suppressions of the prominent bands the 𝜃-band
(4−10 Hz) and the 𝛿-band (0−4 Hz), we used an automated algorithm
adapted from Cartailler et al. (2019) (Fig. 1C and Methods). We com-
puted the suppression ratios IESSR, 𝜃SR and 𝛿SR, which we defined
as the duration ratio spent in iso-electric suppression, 𝜃-suppression,
and 𝛿-suppression respectively, over a 20-second sliding time window
(Fig. 1D and Methods). We then identified the delay 𝜏1𝜃S to the first
𝜃-suppression occurrence, the delay 𝜏1IES to the first IES occurrence,
and the delay to start of long IES 𝜏𝑆 (defined as the time at which
the iso-electric suppression ratio IESSR exceeds the empirically chosen
threshold 𝑇𝑆 = 0.25) (Fig. 1E and Methods). Using the same sliding-
window analysis, we also computed the time-dependent relative powers
of the 𝛿- and 𝜃- bands (see Methods).

For the incremented protocol, IES appeared uniformly in 100%
(13/13) of mice, 16.5 ± 2.2 min after GA onset, at 2% isoflurane
concentration. When using 1.5% concentration in a subset of the same
mice, IES appeared in 89% (8/9) of mice, 10.7 ± 1.8 min after GA
onset. However, at 1% isoflurane concentration, our algorithm detected
IES in only 62.5% (5/8) of mice, 12 ± 4 min after GA onset (Fig. 1F).
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We found a statistical difference in the cumulative IES duration 𝛥IES
(defined as the cumulative time spent in IES per recording) between
the incremental protocol and the 1% protocol but not between other
protocols (Fig. 1G). Interestingly, the 𝜃-band was suppressed at the
same time as IES, but not before (Fig. 1C2, Fig. 1H), contrasting with
propofol-induced GA in humans, where frontal 𝛼-suppressions precede
IES (Cartailler et al., 2019; Sun and Holcman, 2022). At this stage, we
conclude that suppressions of the 𝜃- and 𝛿-bands do not reliably precede
IES appearance in primary somatosensory EEG recordings from mice
during isoflurane-induced GA.

3.2. Spectral decomposition reveals 𝜃- and 𝛿- bands predominance

In analyzing the EEG recordings, we adopted a spectral analysis
approach using the IRASA algorithm (see Methods). This algorithm
provides a robust estimation of the 1/f-component present in the EEG
signal, particularly when additional oscillatory components are present
in the low-frequency domain. Using this approach, we demonstrated
the continuous estimation of parameters for the 1/f- and oscillatory
components in the EEG recordings, a task not easily achieved with
wavelet decompositions alone.

The decomposition began with a single time window 𝑊𝑡 (Fig. 2A).
For each window 𝑊𝑡, the power spectral density was separated into two
components. The first component was the 1/f-component, representing
a decaying trend fitted by the function 𝑦1(𝑓 ) = 𝑎𝑡

𝑐𝑡+𝑓𝑝𝑡 (Fig. 2A2,
see Methods). The second component was the oscillatory component
(Fig. 2A3), accounting for activity in isolated frequency bands, fit-
ted with Gaussians (Fig. 2A4). This separation was extended across
the entire recording by sliding the time window 𝑊𝑡, (Fig. 2B–D).
The algorithm successfully separated the oscillatory component and
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continuously tracked it over time (Fig. 3D, see Methods). In isoflurane-
induced GA in mice, two active frequency bands were identified: the
𝜃- and 𝛿-rhythms (illustrated in Fig. 3D as black and pink lines, re-
spectively). The 𝜃-rhythm was consistently present before GA induction
and decayed shortly after induction, while the 𝛿-rhythm appeared a
few minutes after GA induction. The dynamics of the 1/f-exponent
𝑝𝑡 revealed a general trend across all recordings and protocols: 𝑝𝑡
increased during the beginning of GA, reached a plateau, and then
decreased (Fig. 3E and supplementary section S1.2).

These band dynamics were also observable in the raw signal without
spectral decomposition. Notably, the relative power of the 𝜃-band 𝑃𝜃
(yellow) was consistently higher than the relative 𝛿 power 𝑃𝛿 (green)
before the beginning of GA (Fig. 3F). Shortly after GA induction,
the power ratio 𝑃𝜃 decayed, while 𝑃𝛿 increased, leading to a reliable
change in band dominance, a feature used for classifying distinct GA
states. Subsequently, 𝑃𝛿 decreased while 𝑃𝜃 remained low until the
end of GA. The power 𝑃𝛿 showed a weak correlation with the coef-
ficient 𝑝𝑡 (Fig. S7). Finally, the iso-electric suppression ratio tended
to be higher during the incremented protocol compared to the others
(Fig. 3G). In conclusion, the 𝜃- and 𝛿-bands exhibit prominence during
GA, displaying comparable behaviors across protocols.

3.3. Higher levels of IES precede the appearance of a 𝛾 pattern during
recovery from GA

In some recordings, the EEG spectrogram during GA recovery re-
vealed a stable and long-lasting activity in the 𝛾-frequency domain
(50−70 Hz range) (Fig. 4A). This phenomenon which we refer to as
𝛾-rebound, is characterized by a 𝛾-power greater than that before and
during GA (Methods Section 2.10, Fig. 4A2,6).

To identify spectral features that would predict 𝛾-rebound occur-
rence, we focused on IES. We noticed that 𝛾-rebounds appeared after
GA with burst suppression episodes (Fig. 4A3–4). Burst suppressions
were identified visually as an alternation of IES and burst activity in
the 0−50 Hz range (Shanker et al., 2021) (Fig. 4B1). In parallel, the 𝛾-
rebound consisted of a succession of high amplitude and high power
(purple) bursts located in a narrow frequency range around 60 Hz
(Fig. 4B2).

To further characterize 𝛾-rebound, we investigated whether it was
associated with more time spent in IES. We found that 𝛾-rebound was
present in recordings where the cumulative IES duration (𝛥IES) was
greater than 30 s (Fig. 4C). Thus, recordings were differentiated into
two groups (Methods), those with and without 𝛾-rebound, for which the
cumulative IES duration was 198 ± 144 s and 6.6 ± 10.2 s respectively.

Finally, we investigated the relationship between the cumulative IES
duration (𝛥IES) and the power of the 𝛾-rebound. To do so, we computed
the instantaneous power 𝑝𝛾 in the 50−70 Hz range (Fig. 4A6). We then
computed the area 𝐴𝛾 under the curve of 𝑝𝛾 from the end of GA at
time 𝜏stop

Iso to the end of the recording (time 𝜏stop
rec ). The distribution of

duration and area 𝛥IES, 𝐴𝛾 (Fig. 4D) was fitted with a linear regression
𝑦 = 𝑎𝑥 + 𝑏, where we found 𝑎 = 32757 μV2, 𝑏 = 6047 μV2s, and
𝑅2 = 0.72. This shows that the 𝛾-burst power during recovery was
highly correlated with the cumulative time spent in IES and thus could
be used to mirror the depth of anesthesia. Additionally, we found no
correlation between 𝛥IES and the 𝛾-rebound duration, or the 𝛾-power
𝑝𝛾 (SI section S1.4 and Fig. S8).

We then studied the time of appearance of the 𝛾-rebound relative
to the last episode of IES. We found that the 𝛾-rebound appeared a few
minutes after the last IES (Fig. 4E), with no statistical differences across
protocols. To conclude, we propose that 𝛾-rebound is an a posteriori
marker of long IES, which is characteristic of too deep anesthesia (see
8

Table 2). 𝜏
Table 2
Timestamps of EEG and EMG time-frequency events.
Timestamp Symbols

Starting time of recording 𝜏rec
start

Start of isoflurane administration 𝜏start
Iso

Stop isoflurane administration 𝜏stop
Iso

Stop recording session 𝜏stop
rec

Time of decay of 𝜃 center frequency 𝑓𝜃 𝜏decay
𝜃

Appearance time of 𝛿 rhythm 𝜏app
𝛿

Dampening time of 𝜃 rhythm 𝜏disp
𝜃

Dampening time of 𝛿 rhythm 𝜏disp
𝛿

First IES appearance time 𝜏1IES
First significant IES time 𝜏S

𝛾 rebound begins 𝜏𝛾

Loss of movement time 𝜏LOM

Return of movement time 𝜏ROM

3.4. Transient sequence of EEG time-frequency patterns during isoflurane-
induced GA

In this section, we incorporate the spectral decomposition (Sec-
tion 3.2) and the 𝛾-rebound (Section 3.3) to the EEG segmentation. To
study whether EEG data (Fig. 5A–B) could be segmented based on band
tracking (Fig. 5C), power ratios (Fig. 5D), band suppressions (Fig. 5E),
IES, EEG and EMG spectrograms (Fig. 5F–G), we identified several key
events which reliably appear in a systematic temporal order.

The first relevant event was the beginning of GA, characterized by
isoflurane delivery in the air (Fig. 5H, first red box) at time 𝜏startIso.
We found a decay of the 𝜃-band, characterized by a decrease of the
𝜃 center frequency 𝑓𝜃 (Fig. 5C). We refer to the beginning time of
this phase as 𝜏decay𝜃 (Eq. (15), Methods). To quantify this decay, we
used the IRASA decomposition to follow the 𝜃−oscillatory component.
We then computed the slope of the 𝜃-component in the time-frequency
domain from the maximum of the 𝜃−frequency after induction which
was persistently decaying over few minutes. A regression over 2 min
lead to the following negative slopes 𝑆 computed for each protocol:
𝑆𝜃1% − 1.04 ± 0.465 (n = 9), 𝑆𝜃1.5% = −1.02 ± 0.543, (n = 8) and
𝑆𝜃step = −0.746 + ∕ − 0.467 (n = 13) in Hz/min, thus confirming this
general decay trends.

Third, we found that the 𝛿-rhythm appeared at time 𝜏app
𝛿 (Eq. (8),

Fig. 5D). Fourth and fifth, the 𝜃-rhythm dampened at time 𝜏disp
𝜃 , while

the 𝛿- rhythm also dampens at time 𝜏disp
𝛿 (Eq. (9), Fig. 5D). Significant

IES emerged at time 𝜏S (Eq. (6), Fig. 5E). Finally, we observed a
𝛾-rebound at time 𝜏𝛾 (Method Section 2.10, Fig. 5G).

Although we identified a protocol-independent, ordered chain of
EEG events during induction and maintenance of anesthesia, we were
looking for a possible signature during the emergence phase of GA.
However, we found that the 𝜃− and 𝛿− rhythms did not have a specific
characteristic and systematic trends during emergence as shown in
Fig. S7A–B. Indeed, plotting the 𝜃− and 𝛿− relative powers reveals
opposite trends: for the incremented and 1.5% protocols (left and center
columns, Fig. S7A), the relative delta power (green plot) increases
to a value higher than the baseline value, while the relative theta
power increases very softly (yellow plot). Similar conclusion can be
reached from plotting the ratio 𝑅𝜃∕𝛿 = 𝑃𝜃

𝑃𝛿
or the time-averages values

�̄�𝜃∕𝛿 = ⟨

𝑃𝜃
𝑃𝛿
⟩ over the emergence phase, leading to �̄�𝜃∕𝛿 = 1.067 for

the step protocol, 1.056 for the constant 1.5% protocol, and 0.851 for
the constant 1% protocol. At this stage, we conclude that the 𝛿- and 𝜃-
hythms do not have a general trends during the emergence phase, as
hown by the relative powers, power ratios over time or the average
omputed over this period (SI section S1.1).

In summary, we identified here EEG events (Fig. 5H) that are
elated to brain anesthesia depth. These events seems to occur in the
ame temporal order across all recordings, represented by the time
nequalities (see Table 2 for definition)
start < 𝜏decay < 𝜏app < 𝜏disp < 𝜏disp < 𝜏S < 𝜏𝛾 . (17)
Iso 𝜃 𝛿 𝜃 𝛿
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Fig. 4. Cumulative IES duration > 30 s precedes 𝛾-rebound during recovery from GA. (A) Spectral analysis of 𝛾-rebound (red circle) that appear during recovery after
burst suppression (BS region, red) characterized by IES ratio increase. 𝛾-rebound shows significant amplitude in the 50−70 Hz power band, above threshold 𝑇𝛾 (black dashed
lines). Magnification of 20-s plots (B1) during burst suppression and (B2) during 𝛾-rebound. (C) Statistics of IES duration in separated groups with and without gamma rebound,
****𝑝 < 0.0001 (two-sided Mann–Whitney U test). (D) Boxplot of 𝛾-rebound appearance duration after the last IES given for the three anesthetic protocols and 𝑝-values of the
associated two-sided Mann–Whitney U test. (E) Correlation between areas under 𝛾-bursts power (gray area in B2) and IES durations.
Finally, we quantified the duration between these EEG events and
found that the time order defined by Eq. (17) was valid in all record-
ings, although the duration between two consecutive events varied
across protocols (Table 1). We concluded that, to reach a specific event,
the anesthetized brain passed through all preceding states in a system-
atic order. For instance, significant IES only occurred for recordings in
which the 𝛿 band had dampened (SI section 1.6 and Fig. S9).

We further decided to investigate whether there was any correlation
between these EEG events and mice movement. Using the EMG, we
identified the time 𝜏LOM of movement loss and the return of movement
time 𝜏ROM (Methods Section 2.8, Fig. S6, and Fig. 5G). We found that
the 𝜃-rhythm dampening and the LOM time were very close, such that
this difference was 𝜏disp

𝜃 − 𝜏LOM = 1.9 ± 4.1 min. Likewise, when a
𝛾-rebound appeared in the EEG, it started with ROM, characterized
by a small difference 𝜏𝛾 − 𝜏ROM = 0.3 ± 0.8 min. Interestingly, the 𝛾-
rebound was not due to EMG contamination (SI section S1.5 and Fig.
S10). To conclude, we reported here a sequence of key, strictly ordered
events occurring during GA, which was protocol-independent, with
9

some variability in the transition durations between two consecutive
events. This chain of events was characterized by the dynamics of
the 𝛿- and 𝜃-bands. This sequence of events revealed two possible
EEG behaviors: one leading to long IES and 𝛾-rebound, and another
characterized by little or no IES and the absence of 𝛾-rebound.

3.5. Predictive analysis and state-chart decomposition of isoflurane-induced
GA

To further quantify the predictive value of the transient timestamps
identified in Section 3.4, we used a logistic regression (Methods Sec-
tion 2.9) to determine whether the delay to first IES occurrence time
𝜏1IES, the delay to 𝜃-band decay time 𝜏decay

𝜃 , the delay to the appearance
𝜏app
𝛿 of the 𝛿-band, the delay to dampening of the 𝜃-band (time 𝜏dis

𝜃 ), and
the delay to dampening the 𝛿-band at time 𝜏dis

𝛿 enable a reliable predic-
tion of IES. More specifically, we defined IES sensitivity as whether 𝛥IES
exceeds 30 s during GA, based on the 𝛾-rebound analysis (Section 3.3).

The univariate classification (Fig. 6A) logically revealed that the
variable 𝜏1 was most predictive of IES sensitivity, with a receiver
IES
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Fig. 5. Ordered and chain of time-frequency events. (A) EEG recording. (B) Anesthesia protocol. (C) Extracted oscillatory signal and tracking of the center frequency 𝑓𝜃 of the
𝜃 rhythm. (D) Band power ratios. (E) Suppression ratios. (F) EEG spectrogram. (G) EMG spectrogram. (H) Deterministic and ordered frequency events chain. 𝐶1: cumulative IES
time > 30 s. 𝐶2: cumulative IES time < 30 s.
operating characteristic area under the curve (ROC-AUC) value of 0.95.
Interestingly, the time 𝜏dis

𝛿 (𝜏app
𝛿 respectively) also carried a predictive

power, characterized by a ROC-AUC value of 0.8 (0.65 respectively).
The duration 𝜏𝑆 −𝜏dis

𝛿 was 1.9 ± 1.8 min for the incremented isoflurane
protocol, and 4.5 ± 3.1 min for the 1.5% protocol (SI section 1.6).
Furthermore, the regression analysis showed that the times 𝜏decay

𝜃 and
𝜏dis
𝜃 carried much less predictive power with ROC-AUC values of 0.4

and 0.36 respectively. We thus conclude that the 𝛿-band dynamics carry
more predictive value than the 𝜃-band with respect to IES sensitivity.
10
We then applied a multivariate logistic regression (Fig. 6B) to evalu-
ate the predictive power of specific timestamps combinations. We found
that the three models that performed well were trained the couple
(𝜏1IES, 𝜏

dis
𝛿 ) (ROC-AUC = 0.94), on the triplet (𝜏1IES, 𝜏

dis
𝛿 , 𝜏app

𝛿 ) (ROC-AUC
= 0.9), or on all the timestamps (ROC-AUC = 0.84). Finally, with the
model trained only on 𝛿-band appearance and dampening, we observed
lower performance with ROC-AUC = 0.81. From these analysis, we
conclude that the most predictive variables are the first IES time 𝜏1IES,
the 𝛿-appearance time 𝜏app, and the 𝛿-disappearance time 𝜏dis. We also
𝛿 𝛿
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Fig. 6. Logistic regression and state chart representation. IES Sensitive vs non-IES sensitive classification based on 𝜃, 𝛿 and IES parameters. ROC curves and AUC are computed
using a logistic regression classifier for (A) single predictors and (B) various combinations of predictors. (C) State chart characterizing the transitions between the different GA
states starting from the awake state (black). Further states are associated with motion (blue), moderate depth of anesthesia (green), intermediate depth of anesthesia (orange) and
high depth of anesthesia (red). They are characterized by the presence/absence of the 𝛿 and 𝜃 rhythms and IES. There are three main predictive states of IES sensitivity: the state
‘‘Prominent 𝛿 and 𝜃’’ with a predictive power ROC-AUC = 0.65 and an average time delay to strong IES of 11.6 min, the state ‘‘Pre-IES’’ (ROC-AUC = 0.8 and average time of
3.2 min), and finally the state ‘‘Light IES’’ with a predictive power ROC-AUC = 0.95, and an average time of 3.8 min.
note that none of the multivariate models outperformed the univariate
model trained on the first IES time 𝜏1IES (ROC-AUC = 0.95).

To account for these deterministic relationships (Fig. 5H and Ta-
ble 1), we organize these results into a state chart diagram as a
synthetic graphical representation of the different states we previously
reported: each state is characterized by 𝜃- and 𝛿- band spectral proper-
ties and suppression ratios (Fig. 6C). The initial state of the state chart,
called ‘‘Awake’’, is defined by a prominent 𝜃-band with a stable 𝜃 center
frequency 𝑓𝜃 (Methods Eq. (12)), no prominent 𝛿-band, and no IES.
Subsequently, when isoflurane inhalation starts, the EEG switches to
the second state called ‘‘𝜃 decay’’, in which 𝑓𝜃 decreases. The third state
is ‘‘Prominent 𝛿 and 𝜃’’, where the 𝛿-rhythm has appeared (Methods
Eq. (15)). The fourth state is ‘‘Prominent 𝛿’’, where 𝜃 has dampened.
Three states are accessible from there, which we detail below. In ‘‘Pre-
IES’’, the 𝜃- and 𝛿- bands are dampened and there is no IES. In ‘‘Light
IES’’, the 𝜃-band is inactive, the 𝛿-band is active, and there is little IES
11
(0 ≤ IESSR ≤ 0.25). The third state accessible from ‘‘Prominent 𝛿’’ is
called ‘‘Movement’’, following ROM during recovery after isoflurane
cessation. The next state after ‘‘Pre-IES’’ and ‘‘Light IES’’ is ‘‘Strong IES’’,
characterized by high IESSR values (Methods Eq. (6)), and should be
avoided. When GA stops, ROM happens, leading to the ‘‘𝛾-rebound and
movement’’ state. If isoflurane stops in a different state than ‘‘Strong
IES’’, the EEG transitions to the ‘‘Movement’’ state without 𝛾-rebound.

Interestingly, our statistics revealed an 11.6 min delay (in average)
between the states ‘‘Predominant 𝛿’’ and ‘‘Strong IES’’. This transition
has a predictive value (ROC-AUC = 0.65). Moreover, the average
transition time from the 𝛿-rhythm disappearance state to the strong
IES state is reduced to 3.2 min with a higher predictive (ROC-AUC =
0.8). Finally, the transition from the light IES state to the strong IES
state occurs in 3.8 min on average, with a very high predictive value
(ROC-AUC = 0.95).
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In summary, we constructed a state chart associated with the depth
of anesthesia, where each state is characterized by parameters com-
puted from the EEG and EMG signals. Interestingly, the regression
analysis revealed that the first IES time 𝜏1IES, the 𝛿-appearance time 𝜏app

𝛿 ,
nd the 𝛿-dampening time 𝜏dis

𝛿 could be used to predict IES sensitivity
nd thus provide three different checkpoints that could be used in
eal-time analysis to monitor the brain IES sensitivity. These states
ere interlaced with clinical events observed during GA, namely GA

nduction, GA cessation, and loss and return of movement.

. Discussion

Improving the monitoring of the depth of anesthesia was a cru-
ial endeavor aimed at reducing post-operative complications. While
ddressing anesthetic overdose is essential, preventing overdose has
roven elusive with current clinical EEG-based monitors. In our study,
e employed a signal processing approach combined with classification

echniques, offering the potential to enhance the predictability and
revention of overdose. Through this research, we formulated a compu-
ational method grounded in EEG signals, and established an automated
nd interpretable pipeline. Our approach uncovered reproducible and
imely ordered brain states and transitions, providing a comprehensive
haracterization of the entire process of general anesthesia, spanning
rom induction to emergence. To distill this wealth of information, we
ynthesized these states and transitions into a state-chart representation
hat reflects the real-time depth of anesthesia and predicts the onset of
so-electric suppression (IES) several minutes in advance. This predic-
ive capability holds the promise of preventing overdose, a task that
emains unattained by the existing clinical EEG-based monitors.

In our study, we performed a time-frequency spectral analysis on
EG recordings obtained during isoflurane-induced general anesthesia
GA) in mice. This analysis involved decomposing the power spectrum
ensity to identify prominent band activities. Notably, these activi-
ies were found in the 𝜃- and 𝛿-domains during general anesthesia
nd in the 𝜃-, 𝛿-, and 𝛾-domains during the recovery phase. To fur-
her understand the dynamics, we calculated the relative power of
he 𝜃 and 𝛿 bands. The separation of oscillatory components from
he 1/f-decay was achieved using the IRASA algorithm (Wen and
iu, 2016). Simultaneously tracking several frequency rhythms, we
xtracted their associated Gaussian parameters (refer to Fig. 2 for
isualization). Finally, we employed a threshold heuristic to detect iso-
lectric suppressions (IES) and quantified the cumulative time spent in
his state.

Employing this method enabled the identification of a reliable
equence of events (Fig. 5), delineating the entire process of isoflurane
nesthesia, spanning from induction to emergence. As a result, we
ormulated an EEG state chart that provides a comprehensive reflection
f the duration and anesthesia levels (Fig. 6C), despite the underlying
hysiological mechanism remaining unknown. This state chart holds
he potential for precise anesthetic titration, allowing for the avoidance
f undesirable states associated with prolonged iso-electric suppressions
IES). Notably, we discovered that the dynamics of the 𝛿-band served

as a predictive indicator for long IES several minutes in advance. In
contrast, despite the activity of the 𝜃-band during isoflurane general
anesthesia (GA), it exhibited no predictive value concerning long IES.
Our hypothesis suggests that 𝜃-band activity may correlate with animal
movement, given its dampening around the same time as the loss of
movement (LOM).

Additionally, our observations indicated that the trajectory of EEG
during recovery did not mirror the sequential events observed during
induction and maintenance of GA, highlighting an asymmetry in the
recovery process. Interestingly, we identified a specific activity in
the 𝛾-band during recovery, termed 𝛾-rebound. Notably, this pattern
manifested in recordings where cumulative IES time exceeded 30 s.
Consequently, we propose that this 𝛾-rebound pattern could serve as
12

a retrospective marker of deep anesthesia.
4.1. Beyond the power spectral EEG decomposition

During general anesthesia, the EEG signal combines band oscil-
lations with a prevalent 1/f-decay. Various brain regions contribute
to the oscillatory bands, while the 1/f-decay typically represents the
overall spontaneous neuronal firing activity (Buzsáki et al., 2012-06;
Buzsáki and Mizuseki, 2014; Buzsáki, 2006). Decomposing the power
spectral density of neurophysiological signals offers a means to ex-
tract parameters and quantify these distinct signals (Ouyang et al.,
2020). This process involves estimating the 1/f- and oscillatory com-
ponents directly on the power spectral density and fitting Gaussians
to the oscillatory components, a procedure facilitated by the FOOOF
algorithm (Donoghue et al., 2020). Extracted features, such as the
maximum amplitude frequency and band power, can then be utilized
to quantify the prominence of 𝛼-oscillations and the 1/f-exponent,
revealing differences between young and elderly patients (Donoghue
et al., 2020). However, this approach comes with several limitations.
Notably, when applied to study the loss of consciousness (LOC) in
humans anesthetized with propofol, it failed to detect oscillatory ac-
tivity in the 𝛿-domain (Brake et al., 2021). To address this misclassi-
fication, a convolution procedure on the EEG neuronal network was
proposed (Brake et al., 2021). In our work, we sought to overcome the
FOOOF algorithm’s low performance in the low-frequency domain. We
achieved this by estimating the 1/f-component using irregular sampling
auto-spectral analysis (Wen and Liu, 2016), employing successive re-
samplings of the EEG signal directly, rather than in the frequency
domain. Subsequently, we parameterized the remaining oscillatory
component with Gaussians (Lindner et al., 2015). Importantly, our
estimation method dynamically tracked the time evolution of the 𝛿-
nd 𝜃-bands simultaneously (Fig. 2G). The algorithm developed in this
tudy enables a robust and dynamic spectral decomposition, revealing
he band characteristics during general anesthesia. This fully automated
lgorithm stands as a versatile tool easily applicable to other datasets.

.2. Automated threshold selection for IES detection

In coma and general anesthesia (GA), prolonged iso-electric suppres-
ion (IES) episodes have been linked to subsequent complications such
s confusion, delirium, or memory loss (Andresen et al., 2014; Fritz
t al., 2016b). Recognizing the need for robust and automated real-
ime IES detection, various methods have been employed. Typically,
he identification of long IES involves computing the fraction of time
pent in IES within a sliding time window, often referred to as the burst
uppression ratio (Rampil et al., 1988), akin to our present IES ratio
ESSR. Similarly, the burst suppression probability (BSP) (Chemali et al.,
013) provides binary segmentation indicating the presence of IES.
owever, many existing algorithms (Rampil et al., 1988; Chemali et al.,
013; Cartailler et al., 2019) rely on a fixed threshold value that does
ot account for inter-individual variability in EEG amplitude (Shanker
t al., 2021).

To address this limitation, some approaches, such as estimating
he variance of the EEG signal iteratively (Westover et al., 2013),
ttempt to correct the threshold based on the signal’s variance. How-
ver, this method requires expert adjustment of model parameters for
ach patient, limiting its practicality. Another direct approach (Sun
nd Holcman, 2022) involves computing the minimum between a fixed
hreshold value and the median of the difference between the upper and
ower envelope of the signal, considering individual signal variability.
evertheless, this approach still incorporates a fixed threshold value.

Our data-driven approach represents a significant advancement in
utomatic and accurate IES detection. We propose to compute the IES
hreshold as 𝑇IES = 𝑟IESRMSEEG, with the coefficient 𝑟IES accommodat-

ing inter-individual variability. The selection of the relative threshold
𝑟IES was meticulously performed by continuously exploring detected IES
duration concerning 𝑟IES (SI sec.2.1 and Fig. S2). This approach has

demonstrated robustness on the current dataset, and further evaluation
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of the optimal relative threshold value 𝑟IES = 0.7 on a larger dataset
would be valuable. Importantly, this heuristic could be adapted for real-
time applications by assessing the signal RMS(𝑡) before the onset of GA
as opposed to during GA.

4.3. Revisiting the landmarks to control GA

The current approach broadens the scope of monitoring the depth
of anesthesia beyond iso-electric suppressions (IES). Anticipating the
occurrence of IES in advance holds the potential to reduce the incidence
of post-anesthesia complications associated with IES. However, this
task remains challenging due to the absence of a physiological model
capable of predicting IES based on the EEG signal.

Recent studies (Cartailler et al., 2019; Sun and Holcman, 2022) have
highlighted three parameters predictive of IES sensitivity in frontal
EEG recordings of the human brain under propofol. These parameters
include the first appearance time of an 𝛼 suppression, the slope of
the 𝛼-suppression ratio, and the delay to the first IES occurrence. In
contrast, our observations in primary somatosensory EEG recordings
during isoflurane-induced general anesthesia (GA) in mice revealed
that band suppressions were not predictive of IES sensitivity, as they
did not reliably precede IES. Instead, we identified three parameters
predictive of IES sensitivity: the appearance time of the 𝛿-band, the
dampening time of the 𝛿-band, and the time to the first occurrence of
IES. Notably, the 𝛿 relative power appeared to be predictive, analogous
to 𝛼 suppressions observed in humans under propofol. This discrep-
ancy in predictive parameters may arise from differences in the drugs
used (Kenny et al., 2014), the species recorded (human vs. rodent), or
the electrode locations employed.

4.4. Roles of 𝛿- and 𝜃- oscillations in isoflurane-induced GA

In the context of isoflurane-induced general anesthesia (GA) in mice,
our findings reveal oscillatory activity in the 𝛿- and 𝜃-frequency do-
mains. These two bands appear to serve distinct functions: the dynamics
of the 𝛿 band are linked to neuronal responses to isoflurane and can
anticipate iso-electric suppressions (IES), while the 𝜃 dynamics seems
associated with mouse movements, showing no statistical correlation
with IES. Intriguingly, after GA onset, the 𝛿 rhythm manifests suddenly,
whereas the 𝜃 rhythm exhibits a gradual decay.

In humans anesthetized with propofol, the immediate appearance
of 𝛿 rhythm synchronizes with the loss of consciousness (Brake et al.,
2021). Similarly, high doses of sevoflurane induce coherent 𝛿 oscilla-
tions in rats (Guidera et al., 2017). Our results further indicate that
𝛿 oscillations are present during deep anesthesia, and under fixed
protocols, the timing of their appearance and disappearance proves
predictive of prolonged IES.

While 𝜃 oscillations in the rodent hippocampus are typically asso-
ciated with exploratory locomotion (Vanderwolf, 1969; Welsh et al.,
1985), the 𝜃 oscillations observed in the cortex in our study likely do
not originate from the hippocampus. Recent research has identified a
neural rhythm known as the respiration-entrained rhythm (Tort et al.,
2018), observable across various brain regions, peaking at the same
frequency as breathing (around 12 Hz during exploration and 3 Hz
during REM sleep). It is plausible that some of the oscillatory activity
observed here could stem from the respiration-entrained rhythm.

In conclusion, the state chart diagram (Fig. 6C) encapsulates the
intricate possible pathways of the brain during isoflurane-induced GA,
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which could potentially be generalized to other anesthetics.
4.5. Characteristic 𝛾−activity during recovery from GA

A rebound activity in the 𝛾-band appeared and persisted for several
minutes after GA cessation (Fig. 4). This specific pattern only happened
in recordings with cumulative IES duration exceeding 30 s. Increased
𝛾 activity has been documented during awakening from 2% isoflurane
GA in rats, but no 𝛾-rebound pattern was reported in Kortelainen et al.
(2012). The isoflurane protocol used during recovery in Kortelainen
et al. (2012) differs from ours, which could explain the absence of 𝛾-
rebound. We showed here that this 𝛾-rebound was highly correlated
with the presence of long IES (Fig. 4E). We therefore hypothesize
that the 𝛾-rebound could reflect a neuronal network rebound, after a
long period of hyperpolarization. The exact physiological mechanism
underlying this manifestation remains to be clarified.

4.6. Potential clinical implications

The real-time monitoring of depth of anesthesia in human pa-
tients relies on EEG recording, with monitors processing the EEG and
displaying an index between 0 and 100. Lower index values indi-
cate deeper sedation, while higher indices suggest lighter sedation or
wakefulness. Extensive observational studies have established robust
statistical associations between low EEG index values and poor out-
comes (Sessler et al., 2012). However, the implementation of simple
alerts for undesired EEG states has not shown an improvement in
outcomes, potentially due to the lack of pharmacokinetic profiles for
current hypnotic drugs (Sessler et al., 2019). Correcting an overdose
once detected by the EEG monitor requires a delay of several minutes,
emphasizing the need for preventive measures against undesired EEG
states. Therefore, new methods for analyzing and interpreting EEG
states in routine clinical practice are deemed necessary.

In our research, we identified robust transition states between de-
sired and undesired EEG states and developed analytical tools for
automatic detection of these transition states in mice. Notably, we
successfully identified transition states preceding iso-electric suppres-
sions (IES), a typical undesired EEG state associated with poor out-
comes (Pawar and Barreto Chang, 2022; Shanker et al., 2021). This
prediction contrasts with current EEG monitors, where IES episodes
may occur even with index values within the desired range (Bruhn
et al., 2000; Besch et al., 2011). In summary, the real-time identi-
fication of transitions holds the potential to prevent these undesired
states. Further studies are essential to validate the robustness of these
transition states in both mice and humans undergoing GA. Additionally,
this approach warrants further validation using other GA protocols in
which EEG and EMG states are parallel with behavioral cues.
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