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Unmixing Noise from Hawkes Process to
Model Learned Physiological Events
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Abstract

Physiological signal analysis often involves iden-
tifying events crucial to understanding biologi-
cal dynamics. Traditional methods rely on hand-
crafted procedures or supervised learning, pre-
senting challenges such as expert dependence,
lack of robustness, and the need for extensive
labeled data. Data-driven methods like Convo-
lutional Dictionary Learning (CDL) offer an al-
ternative but tend to produce spurious detections.
This work introduces UNHaP (Unmix Noise from
Hawkes Processes), a novel approach addressing
the joint learning of temporal structures in events
and the removal of spurious detections. Lever-
aging marked Hawkes processes, UNHaP distin-
guishes between events of interest and spurious
ones. By treating the event detection output as
a mixture of structured and unstructured events,
UNHaP efficiently unmixes these processes and
estimates their parameters. This approach signifi-
cantly enhances the understanding of event distri-
butions while minimizing false detection rates.

1. Introduction
The analysis of physiological signals often boils down to
identifying events of interest. Typical examples are with
electrocardiography (ECG), where the detection of the QRS
complex –a.k.a. the heartbeat– is a fundamental step to
characterize the status of the cardiovascular system, with
biomarkers like the heart rate (HR; (Berkaya et al., 2018))
and heart rate variability (HRV; (Luz et al., 2016)). Another
example is the identification of steps in inertial measurement
unit recordings, which is a crucial feature in classifying
pathological gait anomalies (Cimolin & Galli, 2014).

To automatize the event detection step, several approaches
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have been proposed. In most physiological signal process-
ing applications, events are detected with handcrafted proce-
dures based on signal processing techniques. For instance,
the QRS complexes or the steps are identified using peak
detection algorithms (Pan & Tompkins, 1985) or wavelet-
based approaches (Martinez et al., 2004). While these al-
gorithms perform well, they require large domain expertise,
and their parameters tend to be sensible to the acquisition
protocol. Data-driven approaches have also been proposed,
using supervised deep learning (Xiang et al., 2018; Craik
et al., 2019). These approaches demonstrate excellent per-
formance on particular tasks. Yet, they require large labeled
datasets. Another data-driven approach is unsupervised
learning to extract repeating patterns, such as the convolu-
tional dictionary learning (CDL) algorithm (Grosse et al.,
2007). These methods aim to represent events through their
prototypical patterns, which are directly learned from the
data. While these solutions can be applied independently of
the signal, they tend to detect more spurious events.

To reach satisfactory results, all these methods require post-
processing steps to filter out spurious events. Developing
and characterizing these extra steps is a tedious task, requir-
ing domain expertise and time. In this paper, we propose a
novel automatized framework to filter out spurious events
based on their temporal distribution and the event detection
confidence. A key observation for all event detection meth-
ods is that each event is detected independently, with an
estimated confidence in the event detection. However, in
most cases, the events are distributed with an informative
temporal structure: the inter-heartbeat interval is around one
second for a normal ECG. We propose to classify detected
events between spurious and structured ones, by jointly
learning the temporal structure of the events and filtering
out spurious event detection based on the distribution of
confidence levels.

To model the events’ temporal distribution, we rely on
Hawkes processes (HP; (Hawkes, 1971)), a classical type
of point process (PP) to model past events’ influence on
future events. Recent works have proposed novel inference
techniques adapted to physiological physiological events’
distribution (Allain et al., 2022; Staerman et al., 2023). Yet,
these models can’t account for the confidence associated
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with the event detection and need to be extended to deal with
marked PP (Daley et al., 2003), to account for the effect of
the marks in the intensity function.

In addition, inference with these models only works when
all events come from the same process. In our context, a mix-
ture of spurious events from a noise process and structured
events is observed, and direct inference gives uninformative
biased results. Mixtures of Hawkes processes have been
considered in the literature either to cluster events (Liu et al.,
2019; Yang & Zha, 2013) or sequences of events (Xu &
Zha, 2017). They rely on feature-based mixture models (Li
& Zha, 2013; Yang & Zha, 2013; Du et al., 2015) or asso-
ciate a Dirichlet process to classical Hawkes models (Blei &
Jordan, 2006). While these approaches are tailored to find
different auto-excitation patterns, they are not designed to
unmix noise and uninformative events from structured ones.

Contributions. To jointly model the temporal distribution
of events and remove spurious events, we propose a novel
method named UNHaP to Unmix Noise from Hawkes Pro-
cesses. In our model, the output of the event detection
algorithm is treated as a mixture of events of interest with a
Hawkes process structure and spurious events that are not
of interest, distributed as a Poisson process. UNHaP aims
to learn to distinguish between these two distinct processes
to select properly structured events and discard the spuri-
ous ones. Based on the FaDIn framework (Staerman et al.,
2023), we propose an efficient algorithm to jointly unmix
these events and estimate the parameters of the Hawkes
process. We illustrate the benefits of using our unmixing
models rather than the traditional Hawkes process models
with real-world ECG and gait data.

2. Background on Marked Hawkes Processes
A multivariate marked Hawkes process (MMHP) is a self-
exciting point process that models the occurrence of events
in time, where each event is associated with supplementary
information, referred to as the “mark” of the event. The
mark may or may not integrate the event type in the liter-
ature. Throughout this paper, we separate the event type
from the mark and consider continuous marks belonging to
R. We here give our notation and basic information about
MMHP and refer the reader to (Daley et al., 2003) for a
detailed account of these processes.

Counting processes. Let FT be a set of observed marked
events including D types such that for each i ∈ J1 , DK
we have F i

T =
{
(tin, κ

i
n) : κi

n ∈ K, tin ∈ [0, T ]
}

with tin
the time where the n-th event of type i occurs and κi

n its
associated mark. We denote by Ni the random counting
measure defined on [0, T ] × R+, such that Ni(dt,dκ) =∑∞

n=1 δ(tin,κi
n)
(dt, dκ), where t and κ represent respec-

tively the time and the mark, and T ∈ R+ is the stopping

time. Without limitations, the set of marks is assumed to
be any compact set K ⊂ R+. From this measure, we can
define the marginal time arrival process, also called ground
process, as Ni(T ) =

∫
[0,T ]×R+

Ni(dt,dκ) =
∑
n≥1

1tin≤T .

Intensity function. The behavior of a MMHP can be de-
scribed by its intensity function. Conditionally to observed
events, it describes the instantaneous event rate at any given
point in time. Given a MMHP and a set of observation
FT = {F i

T }Di=1, each ground process Ni is described by
the following conditional ground intensity function

λgi(t|Ft) = µi +

D∑
j=1

∫
[0,t)×K

hij(t− u, κ)Nj(du,dκ),

where µi is the baseline rate and hij : R+×K → R+ is the
triggering or kernel function, quantifying the influence of the
j-th process’ past events onto the i-th process’ future events.
The ground intensity quantifies the time probability of future
events, taking into account the marks of previous events. In
the following, we consider independent probability for the
marks (Daley et al., 2003), assuming a factorized form for
the kernel hij(t, κ) = ϕij(t)ωij(κ). This leads to

λgi(t|Ft) = µi +

D∑
j=1

∫
[0,t)×K

ωij(κ) ϕij(t− u)Nj(du× dκ)

= µi +

D∑
j=1

∑
n,t

j
n<t

ωij(κ
j
n) ϕij(t− tjn),

with ωij : K → R+, ϕij : R+ → R+ such that∫∞
0

ϕij(t)dt < 1 and
∫
K ωij(κ)dκ < 1. These conditions

ensure the stability of such processes. The function
ωij(·) weights the probability that a future event occurs
depending on the past events’ marks. Assuming a collection
{fi : K → R+}Di=1 of density functions, we define the joint
intensity function as λi(t, κ) = λgi(t|Ft) fi(κ), where the
ground process depends on the mark distribution reflected
by fi and the distribution of the influence of the mark
described by ωij .

ERM-based inference. Inference for MMHP is usually
performed using the log-likelihood to align the model with
the observed data (Daley et al., 2003; Bacry et al., 2015).
While this can be efficient for Markovian kernels, it becomes
computationally expensive for more general ones (Staerman
et al., 2023). In this paper, we instead resort to the ERM-
inspired least squares loss (refer to Eq. (II.4) in Bompaire,
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2019, Chapter 2). The goal is to minimize

L (θ,FT ) =

D∑
i=1

∫ T

0

∫
K
λi(s, κ;θ)

2 dκds

− 2

D∑
i=1

∑
(tin,κ

i
n)∈F i

T

λi

(
tin, κ

i
n;θ

)
,

where θ = {µi, ϕij , ωij}Di=1. This loss function corre-
sponds to the empirical approximation of the expected risk
incurred by the model measured by ∥λ(θ)− λ∗∥2, with λ∗

the true intensity function. It is more efficient to compute
than the log-likelihood, especially for general parametric
kernels (Staerman et al., 2023).

3. Unmixing Noise from Hawkes Process
Problem statement. We consider a set of observed events
FT =

{
ein = (tin, κ

i
n), 1 ≤ n ≤ Ni(T )}Di=1 with events

originating from two independent processes. We denote
FT,k =

{
ei,kn = (ti,kn , κi,k

n ); 1 ≤ n ≤ Nk
i (T )

}D

i=1
these

two processes such that FT = FT,0 ∪ FT,1. We consider
the case where FT,0 is a homogeneous marked Poisson pro-
cess –representing spurious event detections– and FT,1 is a
MMHP –for structured events. This problem is a denoising
problem, where spurious events are considered as noise that
should be discarded for the application.

Our goal is to unmix these two processes, i.e., to associate
each event ein ∈ FT with a label Y i

n ∈ {0, 1} such that
Y i
n = 1, if ein originates from FT,1. This task amounts

to binary classification for the events. However, the main
difficulty lies in that the labels are unknown, and the events
are not independent. To cope with the lack of labels, we
propose to leverage the temporal MMHP structure of FT,1

to characterize structured events, assigning events with this
process if they are plausible according to the MMHP model.
This is an arduous assignment problem, which we address
using a variational inference approach and a mean-field
relaxation. This procedure allows us to jointly estimate the
parameters of the processes while unmixing the events, see
Figure 1.

Latent variables and risk function. Unmixing noise from
MMHP events amounts to a binary classification task, where
the underlying structure of the events allows to discriminate
between the two classes and has to be inferred. Our goal
is thus to infer the value of latent variables Y i

n for each
event such that Y i

n = 1 if the n-th event of the i-th type is
generated by FT,1 while Y i

n = 0 if it is generated by FT,0.

When these latent variables are known, it is possible to
write the intensity functions of both processes from the
observed events FT . Spurious events from FT,0 are dis-
tributed following a marked Poisson process with intensity
λ0
i (t, κ;θ0) = µ̃if

0
i (κ) such that µ̃i ∈ R+, f0

i : K → R+,

∫
K f0

i (κ) dκ = 1 and θ0 = {µ̃i}Di=1. Non-spurious events
follow a MMHP whose intensity, denoted λ1

i (t, κ;θ1), can
be derived from the observed events only. We have, for
t ∈ [0, T ],

λ1
i (t, κ;θ1) =

(
µi +

D∑
j=1

∑
t
j
n<t

Y j
nϕij(t− tjn; ηij) ωij(κ

j
n)
)
f1
i (κ),

where ϕij is a parametric kernel parametrized by ηij and
θ1 = {µi, ηij}Di,j=1. An important remark is that the inten-
sity function depends only on past events from FT,1. This
is where our model differs from classical MHHP models, as
it is necessary to select the right events to be able to compute
the intensity function.

Conditioned on the latent variables {Y i
n}, both processes are

independent. The risk for the parameters θ is thus the sum
of the least square loss, defined in (1), for each process, i.e.,
L(θ;FT ) = L(θ0;FT,0) + L(θ1;FT,1). The complete
loss, assuming YT = {Y i

n}i,n are observed, can thus be
written as L (θ;YT ,FT ) =

∑D
i=1 Li (θ;YT ,FT ), where

Li (θ;YT ,FT ) =

∫ T

0

∫
K
λ0
i (t, κ;θ0)

2 dκdt

+

∫ T

0

∫
K
λ1
i (t, κ;θ1)

2 dκdt

− 2
∑

ein∈Fi
T

(1− Y i
n)λ

0
i (t

i
n, κ

i
n;θ0)

− 2
∑

ein∈Fi
T

Y i
nλ

1
i (t

i
n, κ

i
n;θ1).

(1)

If λ0
i and λ1

i are the true intensity functions of the un-
derlying processes, then we have EFT

[Li (θ;YT ,FT )] =
∥λ0

i (θ0) − λ0
i ∥22 + ∥λ1

i (θ1) − λ1
i ∥22 − C where C is a

constant in θ. This loss L (θ;YT ,FT ) is thus the empirical
risk of the model for a given set of observed events and
an assignment {Y i

n}, and the model’s parameters can be
inferred by minimizing it.

Mean-field-based Variational Inference. The goal of
our procedure is also to infer the collection of {Y i

n}. The
classical procedure to solve such latent factor estimation
with probabilistic models is to resort to the Expectation-
Maximization (EM) algorithm. This algorithm allows the
iterative refinement of the θ’s estimate by maximizing the
likelihood marginalized over the latent factors Y i

n. This
requires being able to compute the marginalized likelihood
or at least estimate it with Monte Carlo sampling. But this
step is not possible with the assignment variable Y i

n due to
the complex dependency structure between the various Y i

n

imposed by the Hawkes process structure.

To alleviate this challenge, we propose to resort to a mean-
field approximation with independent variables for each

3
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Figure 1. Illustration of the UNHaP framework. The goal of UNHaP is to distinguish between structured events (green) and spurious
ones (red) by identifying the structure of the MMHP (grey) from the observed events (blue).

event. Concretely, we perform the following approximation

p(Y;FT ) =

D∏
i=1

p(Y i;F i
T ) ≈

D∏
i=1

Ni
T∏

n=1

q(Y i
n; ρ

i
n), (2)

where q(Y ; ρ) is a univariate Bernoulli distribution with pa-
rameter ρ. The parameter ρin is the probability that Y i

n = 1.
It corresponds to a relaxation of the assignment variable
Y i
n ∈ {0, 1} to the interval [0, 1]. This relaxation allows

us to compute the expected risk of the model with respect
to the latent variables. Therefore, we have L̄ (ρ,θ;FT ) =

EY [L (θ;YT ,FT )] =
∑D

i=1 L̄i (ρ,θ;FT ) with

L̄i (θ,ρ;FT ) =

∫ T

0

∫
K
λ0
i (t, κ)

2 dκdt

+

∫ T

0

∫
K
λ̄1
i (t, κ)

2 dκdt+C(ρ)

− 2
∑

n,tin∈F i
T

(1− ρin)λ
0
i

(
tin, κ

i
n

)
− 2

∑
n,tin∈F i

T

ρinλ̄
1
(
tin, κ

i
n

)
,

(3)

where ρ = {ρin},

C(ρ) =

D∑
j=1

∫ T

0

∑
n,tjn<t

ρjn(1−ρjn) ωij(κ
j
n)

2ϕij(t−tjn)
2dt

and

λ̄1
i (t, κ;θ1) =

(
µi+

D∑
j=1

∑
t
j
n<t

ρjnϕij(t− tjn; ηij)ωij(κ
j
n)
)
f1
i (κ)

corresponds to λ1
i where Y has been replaced by ρ. Here,

we can replace Y i
n by its expectation ρin in the integral of the

squared intensity as E[Y i
nY

i
l ] = ρinρ

i
l for the distribution q.

However, this is not true for E[(Y i
n)

2] which is equal to ρin
and not (ρin)

2. C(ρ) corrects this discrepancy. Note that L̄
can also be seen as a relaxation of the assignment problem
with continuous variables ρin.

Algorithm 1 UNHaP solver.
input Set of events FT .
initialization ρ(0) i.i.d.∼ q(1/2), θ(0) initialized with Mo-

ments Matching.
for ℓ=1, . . .niter do

(E-step) ρ(ℓ) = argmin
ρ

∑D
i=1 L̄i

G(ρ;θ
(ℓ−1),FT )

(C-step) Assign the events by computing

Y(ℓ)
T =

{
Y i,(ℓ)
n = I{ρi,(ℓ)n > 1/2}

}
i,n

.

(M-step) θ(ℓ) = argmin
θ

LG(θ;Y(ℓ)
T ,FT ) initialized

θ at θ(ℓ−1).
end for

output θ(niter),ρ(niter).

Based on this mean-field approximation, we propose a vari-
ant of the classification EM algorithm (CEM; (Celeux &
Govaert, 1992)) summarized in (3). The E-step consists in
minimizing L̄

(
ρ,θℓ−1;FT

)
w.r.t. the latent parameters ρ.

The C-step assigns each event to the corresponding class
{0, 1} by setting Y

i,(ℓ)
n = I{ρi,(ℓ)n > 1/2}. The M-step

amounts to minimizing L(θ;YT ,FT ) w.r.t. θ. Repeating
these steps yields an estimation of the parameter θ, encod-
ing the structure of the events, as well as the assignment Y i

n

of each event ein to one of the two processes. This proce-
dure constitutes the core of the UNHaP unmixing procedure.
In addition to this variational procedure, fast and efficient
inference in UNHaP relies on several key points described
below.

Efficient parameter inference. To allow UNHaP to scale
to large physiological event detection applications, the
estimation of the parameters θ(ℓ) in the M-step relies on the
FaDIn framework (Staerman et al., 2023). This framework
is adapted to capture delays between large events with gen-
eral parametric kernels and efficient inference. It relies on
three key ingredients: (1) the discretization of the timeline
with a stepsize ∆, (2) the use of finite support kernels ϕij

with length W such that ϕij(t) = 0,∀t /∈ [0,W ], and (3)

4
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precomputations terms for the ℓ2 loss, allowing to make
the computational complexity of the optimization steps
independent of the number of events. Based on these
ingredients, we add an index G to the losses, referring to
the discretization grid on the previously introduced losses
(1) and (3). For details on adapting this framework to our
unmixing problem, we refer the reader to Section A.1.

Minimization steps. The E and M steps of (3) are per-
formed using gradient-based optimization on the losses
LG(θ;YT ,FT ) and L̄G(ρ,θ;FT ). To improve the flex-
ibility of the CEM procedure, we define a parameter b that
sets the number of optimization steps conducted on θ before
updating ρ. This parameter controls a trade-off between
recovering the parameters of the two mixed processes and re-
covering the correct latent mixture structure. The gradients
w.r.t. each parameter are exhibited in the Section A.3. The
gradient of ρ requires the gradient of the precomputation
terms w.r.t. ρ. Therefore, these terms must be computed at
each update of ρ, i.e., every b optimization steps. The bottle-
neck of the computation cost of UNHaP is then the updates
of precomputation terms. Given a number of iterations of
our solver, say niter, the total cost of the precomputation is
dominated by O

(
⌊niter/b⌋D2L2G

)
, where G is the num-

ber of elements of G and L = ⌊W/∆⌋ is the number of
elements of the grid used for the kernel discretization.

Initialization with Moments Matching. As it is generally
the case when inferring Hawkes processes (Lemonnier &
Vayatis, 2014), the loss LG is non-convex w.r.t. its parame-
ters and may converge to a local minimum, thus yield sub-
optimal parameters. The quality of these minima strongly
depends on the initialization scheme used for the initial
value of the baselines and the kernel parameters. A natural
approach is to select them randomly. However, this option
can make the algorithm unstable and yield sub-optimal pa-
rameters as the solver can fall into irrelevant local minima.
Another option is to take advantage of the observed event
distribution and perform moment matching to initialize the
parameters. We refer to this option as “Moments Matching
initialization”. Moment matching ensures that the moment
of the observed distribution matches the moment of the
parametric model with the initial parameter. All the math-
ematical details and numerical experiments demonstrating
the advantages of using Moments Matching are deferred in
Section A.2 and Section B.3, respectively.

4. Numerical Validation
In this section, we evaluate the benefits of UNHaP in re-
covering the structure of the mixture of latent variables and
the parameters of the structured events on simulated data.
We also compare the performance of UNHaP with other
PP solvers and show that it is more robust to noise while
keeping a reasonable computational cost.

4.1. Joint inference and unmixing with UNHaP

Based on simulated processes, we show that UNHaP jointly
recovers the parameters of the Hawkes events and the mix-
ture’s latent variables in various noise settings.

Simulation. With the Immigration-Birth algorithm (Møller
& Rasmussen, 2005; 2006), we generate one-dimensional
marked events in [0, T ]×K with T = {100, 1000, 10000}
and K = [0, 1] from the mixture process with the following
intensity function

λ(t, κ;θ) =

(
µ+α

∑
tn<t

Ynω(κn)ϕ(t−tn; η)

)
f1(κ)+µ̃ f0(κ),

(4)
where ω(κ) = κ and Yn = 1 if tn is generated by the
Hawkes process. The intensity µ̃ of the Poisson process is
amenable to the noise level of the mixture process and α
characterizes how strong the excitation structure is1. We
denote α = αEf1 [ω(κ)] the excitation level such that α →
1 indicates a high excitation structure, with most events in
the MMHP stemming from previous ones, while α → 0
indicates no structure, as the process is almost a Poisson
process. f0 and f1 are the marks’ distributions and we set
f1(κ) = 2κ to account for a linear mark distribution for
structured events. For the noisy marks, we consider two
settings: one linear with f0(κ) = 2(1−x) and one uniform
with f0(κ) = 1. These two cases correspond to different
information levels present in the marks on the probability of
being a true event. The excitation kernel ϕ(·; η) is chosen
as a truncated Gaussian kernel, to model delays between the
events. With η = (m,σ), it reads

ϕ(·; η) = 1

σ

γ
( ·−m

σ

)
F
(
W−m

σ

)
− F

(−m
σ

)10≤·≤W ,

where W is the kernel length and γ (resp. F ) is the probabil-
ity density function (resp. cumulative distribution function)
of the standard normal distribution. In our experiments, we
set η = (0.5, 0.1).

Robust parameter inference with UNHaP. To highlight
the robustness of the Hawkes excitation structure recovery
with UNHaP and the necessity to infer the mixture parame-
ters, we compare the parameter recovery for different noise
levels µ̃ ∈ [0.1, 1.5]. We set µ = 0.8, α = 1.45, which
correspond to a process with clear structure.

We infer the MMHP’s parameters θ = {µ, α,m, σ} with
UNHaP and compare our results with a marked version of
FaDIn, which we called “JointFaDIn”. We set ∆ = 0.01
and W = 1 with 10000 optimization steps for UNHaP and
JointFaDIn. The number of iterations chosen between two

1the maximum authorized α parameter to have a stable process
is such that αEf1 [ω(κ)] = 2α

3
< 1.
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Figure 2. Parameters estimation errors for UNHaP and “jointfadin”
for varying T w.r.t. different values of µ̃ with linear (left) and
uniform (right) distributions on noisy marks.

updates of ρ̂ is set to b = 200 according to the sensitivity
study depicted in Section B.1. Figure 2 reports the median
value over 100 repetitions of ||θ̂ − θ||2, reflecting the error
between the estimates and their actual values, for the linear
marks (left) and uniform marks (right) settings. UNHaP
outperforms JointFaDIn in all settings while being more
robust w.r.t. the noise level µ̃, as the performances remain
constant. This experiment shows that accounting for the
mixture’s latent variables is crucial to recovering the param-
eters of the structured events. We also see that the linear
mark distribution allows for better parameter recovery, as it
is more informative to infer the mixture’s latent variables.

UNHaP recovers the mixture structure. To show the per-
formance of UNHaP to classify the observed events between
the spurious and structured ones, we use the simulated pro-
cesses defined above, varying α ∈ [0, 1]. Here, we set
µ = 0.4 and µ̃ = 0.1. Experiments varying the noise levels
(µ̃ = 0.5 and µ̃ = 1) are presented in Figure 6.

We consider the mixture parameter ρ inferred with UNHaP
in the case of structured (linear setting) and unstructured
(uniform) noise marks. We set ∆ = 0.01, W = 1 and
b = 200 with 10000 optimization steps for UNHaP. In
Figure 3, we report the Precision and Recall scores of the
estimated mixture parameter ρ̂ w.r.t. the ground truth. We
can see the convergence ρ̂ towards the true ρ∗ when the ex-
citation structure grows in both cases. When α is small and
the excitation structure absent, only the mark distribution
may distinguish between the events stemming from µ and
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Figure 3. Precision/Recall values for the estimation of ρ for dif-
ferent values of T w.r.t. α with linear (left) and uniform (right)
distributions on noisy marks.

µ̃. Figure 3 shows that the accuracy of ρ̂ stays high for a
small α when mark densities are different (right), but it is
challenging when they overlap (left).

4.2. Benchmarking inference and computation time

We compare UNHaP with various Hawkes process solvers
by assessing approaches’ statistical and computational
efficiency in the case of simulated noisy and non-noisy
data. Considering the few models and open-sourced code
available in the marked Hawkes process area, we compare
UNHaP with popular unmarked Hawkes solvers. We com-
pare with parametric approaches 1) FaDIn (Staerman et al.,
2023); 2) Neural Hawkes Process (Neural Hawkes; Mei &
Eisner 2017) where authors model the intensity function
with an LSTM module; and 3) Tripp (Shchur et al., 2020),
where a triangular map is used to approximate the compen-
sator function, i.e., the integral of the intensity function.

We simulate a marked Hawkes process in a high noise set-
ting, where noisy events have a small mark compared to the
Hawkes events. Its intensity function is defined as in (4),
with a linear mark distribution in [0, 1]. We also simulate a
Poisson Process for the noisy events, with a uniform mark
distribution in [0, 0.2]. Therefore, ω(κ) = κ, f1(κ) = 2κ
and f0(κ) = 10≤κ≤0.2. We set µ = 0.1, α = 1, imposing
a high excitation phenomenon, and µ̃ = 1, corresponding to
a high-noise setting.

We then conduct inference on the intensity function of the
underlying Hawkes processes using UNHaP and the three
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NLL Computation time (s)

T 100 500 1000 100 500 1000

UNHaP 0.624 ± 0.31 0.447 ± 0.12 0.346 ± 0.03 96.2 ± 4.5 109.6 ± 5.9 117.4 ± 5.8

FaDIn 2.445 ± 0.19 2.442 ± 0.1 2.441 ± 0.14 41.3 ± 19.4 32.5 ± 12.8 30.9 ± 5.9

Tripp 4.27 ± 0.62 2.137 ± 0.18 1.555 ± 0.07 44.6 ± 6.7 50.9 ± 3.7 55.3 ± 3.5

Neural Hawkes 2.006 ± 0.7 1.574 ± 0.45 1.141 ± 0.2 43.4 ± 16.8 171.8 ± 38.1 183.3 ± 30.7

Table 1. Mean ± standard deviation (over ten runs) of the Negative Log-Likelihood (NLL) on marked events in noisy settings for
various models and various sizes of events sequence.

aforementioned methods, ∆ = 0.01 applied consistently
across all discrete approaches and W = 1 for FaDIn and
UNHaP. This experimental procedure is replicated for vari-
ous values of T ∈ {10, 500, 1000}. The NLL is computed
on a test set simulated with parameters identical to the train-
ing data. The median NLL over ten runs and the computa-
tion time are displayed in Table 1.

In this marked and noisy setting, UNHaP demonstrates a
statistical superiority over all methods. This outcome aligns
with expectations in a parametric approach when the utilized
kernel belongs to the same family as the one used for event
simulation. It is essential to highlight that these results stem
from analyzing a single (long) data sequence, contributing to
the subpar statistical performance of Neural Hawkes, which
excels in scenarios involving numerous repetitions of short
sequences due to the considerable number of parameters
requiring inference. From a computational time standpoint,
UNHaP takes much longer than the other methods but is
the only one converging to an accurate result. It is slower
compared to FaDIn, which is expected due to the alternate
minimization scheme, which performs repeated parameter
inference using a procedure similar to FaDIn. UNHaP is
the only successful solver in the noisy data context at a
reasonable computation cost. In an unmarked setting, UN-
HaP performs on par with the other methods, with a slight
advantage in noisy settings; see Table 3.

5. Application to Physiological Data
To demonstrate the usefulness of UNHaP in a real-world
application, we use it to characterize the inter-event interval
distribution in ECG and gait data. Additional experimental
details are provided in Section 5. Statistics derived from
ECG inter-beat intervals, such as the heart rate (HR) and
the heart rate variability (HRV), are central in diagnosing
heart-related health issues, like arrhythmia or atrial fibrilla-
tion (Shaffer & Ginsberg, 2017). Similarly, the study of a
person’s gait with inertial measurement units (IMU) is es-
sential in diagnosing pathologies like Parkinson’s disease or
strokes (Truong et al., 2019), in particular by analyzing the
inter-step time intervals. Computing these statistics requires
a robust detection of heartbeats (Berkaya et al., 2018) or

steps (Oudre et al., 2018). Classical domain-specific meth-
ods are typically used (Pan & Tompkins, 1985; Elgendi,
2013; Hamilton, 2002), in combination with heavily tai-
lored post-processing steps (Merdjanovska & Rashkovska,
2022; Oudre et al., 2018) to cope with spurious event de-
tection resulting from noisy signals. The design of such
methods is cumbersome, requires domain expertise, and
does not generalize well.

A more automatized approach to detect events is to use Con-
volutional Dictionary Learning (CDL; (Tour et al., 2018)).
While it is more domain-agnostic than classical methods,
this method is even more prone to spurious event detection.
UNHaP circumvents this issue by post-processing the de-
tected events to separate structured events from spurious
ones. In the following, we use UNHaP to post-process
ECG and gait events detected using CDL. We show on ECG
data from the vitaldb (Lee et al., 2022) and gait data from
(Truong et al., 2019) that our generic methodology reaches
performance on par with state-of-the-art, heavily tailored
methods. Our results showcase that UNHaP filters out noisy
events and that the inferred parameters are coherent with
the physiological data.

Experimental Pipeline for CDL+UNHaP method. We
used the same method for ECG and gait recordings. In what
follows, it is illustrated on ECG recordings. The proposed
method relies on the CDL algorithm from the Python library
alphacsc (Tour et al., 2018) to detect events. Denote
by X an ECG slot, CDL decomposes it as a convolution
between a dictionary of temporal atoms D and a sparse tem-
poral activation vector Z: X = Z ∗D+ε. Starting from the
ECG signal depicted in Figure 4 (A), panel (B1) shows the
learned temporal atom on ECG, and panel (B2) shows the
activation vector Z from ECG window obtained with CDL.
There are non-zero activations for each beat, but they are
mixed with noisy activations in Z. Handcrafted threshold-
ing methods would typically be used here to remove noisy
activations from Z, but would need to be adapted for each
recording. Instead, we process the raw activation vector Z
with the proposed UNHaP method. The solver separates the
heartbeat Hawkes Process from the noisy activations (Fig-
ure 4 (C2)) and estimates the inter-burst interval (Figure 4
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Figure 4. Experimental pipeline on ECG Data. (A) Sub-sample of raw ECG plot. (B) Output of Convolutional Dictionary Learning
algorithm: (B1) learned temporal atom representing one heartbeat, (B2) detected events on the time interval. (C) Output of UNHaP: (C1)
Estimated Hawkes parameters: noise baseline (red), baseline (pink), and kernel (dark green). The kernel is very close to the ground truth
(orange dashed). (C2) Unmixing output ρ: events were classified either belonging to the Hawkes Process (green) or as spurious noisy
events (red).

(C1)). The mean (respectively the standard deviation) of
the parameterized truncated Gaussian ϕ estimates the mean
inter-beat interval (respectively the heart rate variability) on
the ECG slot X . With this example, we see that UNHaP suc-
cessfully detects the structured events from the noisy ones,
providing a good estimate of the inter-beat distribution.

Results. We compare several estimators of the inter-beat
and inter-step interval distributions, including the devel-
oped pipeline UNHaP and with FaDIn (Staerman et al.,
2023) to post-process the detected events. We also compare
several domain specific libraries: pyHRV (Gomes, 2024),
Neurokit (Makowski et al., 2021), which are tailored to
ECG, and Template Matching (Oudre et al., 2018), a method
specifically tailored for gait detection.

For ECG, the mean inter-beat interval obtained with these
estimators is compared to the ground truth, which is given
in the dataset. We average each estimator’s absolute and
relative absolute errors over the 19 ECG recordings, and
report the results in Table 2. UNHaP, pyHRV, and Neurokit
have equivalent performance, all providing good heart rate
estimates, even though our method has a increased variance.
Another interesting finding is that while working with the
same detected events, UNHaP vastly outperforms FaDIn.
This highlights again the benefit of our mixture model to sep-
arate structured events –here quasi-periodic– from spurious
ones.

We applied the same pipelines to gait recordings. Results
in Table 2 show that UNHaP performs as well as state-of-
the-art on gait data, while methods designed for ECG fail
to provide accurate estimates of the inter-step interval. This
illustrates UNHaP’s universality and robustness compared
to existing methods. The pipeline developed here is agnostic

and meant to be robust on a wide range of data modalities
while being unsupervised and requiring no pre-processing
or data adjustment.

ECG Gait
AE RAE MAE

CDL + UNHaP 0.61±0.93 0.009±0.012 0.04
CDL + FaDIn 15.44±19.39 0.192±0.227 1.2

pyHRV 0.57±0.14 0.008±0.002 0.67
Neurokit 0.45±0.07 0.006±0.001 0.57

T. Matching N/A N/A 0.07

Table 2. (left and center column) Absolute Error (AE, in beats
per minute) and Relative Absolute Error (RAE) of the estimated
average inter-beat interval (mean ± std) on the vitaldb dataset.
(right column) Median Absolute Error (MAE, in seconds) of the
estimated average inter-step interval on the gait dataset.

6. Discussion
Having defined the challenge of distinguishing unstructured
Poisson processes from structured events, this work in-
troduces UNHaP – a model built upon a mixture marked
Hawkes process designed to disentangle noise from struc-
tured events. UNHaP utilizes latent variables to represent
the mixture of the two marked processes to eliminate spu-
rious events. This is achieved by minimizing an ERM-
inspired least squares loss, incorporating finite-support ker-
nels and discretization, and ensuring reasonable computa-
tional costs. Additionally, UNHaP accommodates using any
parametric form of triggering kernels, making it particularly
pertinent for monitoring ECG heart rate. We demonstrate
the benefits of using our unmixing models rather than the
traditional Hawkes process models with simulated and real-
world ECG and gait data.
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A. Technical Details
A.1. Detailing UNHaP loss with Joseph E Mietus, George B Moody, Chung-Kang Peng,discretization

In the following, we assume that the functions ωij(·) are identical for 1 ≤ i, j ≤ D and denote it by ω(·).

Discretization and finite support kernels. Motivated by computational efficiency and the use of general parametric kernels,
we adopt a setting similar to the one recently proposed by (Staerman et al., 2023). First, we discretize the time by projecting
each event time tin on a regular grid G = {0,∆, 2∆, . . . , G∆}, where G =

⌊
T
∆

⌋
. We refer to ∆ as the stepsize of the

discretization and denote by F̃ i
T the set of projected events of F i

T on the grid G. Second, we suppose the length of the
kernels ϕij to be finite. This assumption is consistent with scenarios in which an event’s impact is limited to a relatively short
time frame in the future. Examples of such applications include neuroscience (Allain et al., 2022) or high-frequency trading
(Bacry et al., 2015). We denote by W the length of the kernel’s support kernel, such that ∀i, j, ∀t /∈ [0,W ], ϕij(t) = 0.
The size of the kernel of the discrete grid is then equal to L =

⌊
W
∆

⌋
. With these two key features, the intensity boils down to

λ̄1
i ([s], κ;θ1) =

(
µi +

D∑
j=1

L∑
τ=1

ϕ∆
ij [τ ]z̃j [s− τ ]

)
f1
i (κ),

where s ∈ J0 , GK and ϕ∆
ij [·], z̃j [·] are vector notations. Precisely, ϕ∆

ij [s] = ϕij(s∆) and z̃j [s] =∑
tjn

ρjn ω(κj
n) 1{|tjn−s∆|≤∆

2 }. For notation convenience, we introduce the vectors ρj [·], zj [·] such that ρj [s] = zj [s] = 0

when there is no events at location s and to ρj [s] = ρjn, zj [s] = ω(κj
n) if there is an event tjn at position s. Therefore, z̃j can

be written as z̃j = ρj ⊙ zj ∈ RG+1
+ where ⊙ is the Hadamard product. The computation of the intensity function is more

efficient in the discrete approach, leveraging discrete convolutions with a worst-case complexity that scales as O(Ng(T )L),
where Ng(T ) =

∑D
i=1 Ngi(T ) is the total number of events, contrasting with the quadratic complexity w.r.t. Ng(T ) in

general parametric kernels. The bias introduced by the discretization setting is negligible in most cases (Kirchner, 2016;
Kirchner & Bercher, 2018; Staerman et al., 2023).

Efficient Inference. Our approach aims at minimizing the discretized version of L̄(ρ;θ,FT ) and L(θ;YT ,FT ) according
to the latent mixture’ parameters ρ and the process’s parameters θ. Given the previous notations, we get

L̄i
G(ρ,θ, F̃T ) = T (H1

i µ
2
i +H0

i µ̃
2
i ) + 2∆H1

i µi

D∑
j=1

L∑
τ=1

ϕ∆
ij [τ ]Φ̃j(τ ;G)

+ ∆H1
i

∑
j,k

L∑
τ=1

L∑
τ ′=1

ϕ∆
ij [τ ]ϕ

∆
ik[τ

′]Ψ̃j,k(τ, τ
′;G) + ∆

D∑
j=1

L∑
τ=1

ϕ∆
ij [τ ]

2 Ξ̃j(τ ;G)

− 2

(
µ̃i

∑
(t̃in,κi

n)∈F̃i
T

f0
i (κ

i
n)

(
1− ρi

[
t̃in
∆

])

+ µi

∑
(t̃in,κi

n)∈F̃i
T

f1
i (κ

i
n)ρ

i

[
t̃in
∆

]
+

D∑
j=1

L∑
τ=1

ϕ∆
ij [τ ]Φ̃j(τ ; F̃

i
T )

)
,

where Hℓ
i =

∫
K(f

ℓ
i (κ))

2 dκ for ℓ ∈ {0, 1} and Φ̃j(τ ;G) =
∑G

s=1 z̃j [s − τ ], Ψ̃jk(τ, τ
′;G) =

∑G
s=1 z̃j [s − τ ]z̃k[s −

τ ′], Ξ̃j(τ ;G) =
∑G

s=1

(
z2j [s − τ ]ρj [s − τ ] − z̃2j [s − τ ]

)
and Φ̃j(τ ; F̃ i

T ) =
∑

(t̃in,κ
i
n)∈F̃ i

T
f1
i (κ

i
n)ρ

i
[
t̃in
∆

]
z̃j

[
t̃in
∆ − τ

]
.

Conditionally to the knowledge of ρ, these last four terms can be precomputed, removing the computational complexity’s
dependency on the number of events (here represented by the grid) during the optimization on parameters θ. The cost
of computing Ψ̃j,k(·, ·;G) is dominating and requires O(G) operations for each (τ, τ ′) and (j, k) leading to O(D2L2G)
as in the FaDIn framework. Note that the loss LG(θ;FT ,YT ) can be derived identically, one may just replace the ρin by
Y i
n = I{ρin > 1/2} and removing the fourth term.
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A.2. Initialization with Moments Matching

Moment matching ensures that the moment of the observed distribution matches the moment of the parametric model
with the initial parameter. Let us consider a multivariate marked Hawkes Process of ground intensity functions {λgi}
and ground counting processes Ng1 , . . . , NgD being equal to the number of observed events on time interval [0, T ]. The
proposed initialization method relies on choosing initial parameters such that the empirical process expectation is equal to
the expectation of the model, i.e.

Ngi(T ) = E[Ngi(T )] =

∫ T

0

λgi(t) dt. (5)

This system is not fully determined as we only have one equation for multiple unknown variables. To compute a simple
solution for this system, we make some extra assumptions. First, we consider that all ρin are equal to 1

2 . With this, we get

N0
gi(T ) =

Ngi
(T )

2 and thus we can compute a moment matching value µ̃m
i since

Ngi(T )

2
=

∫ T

0

λ0
gi(s)ds = T µ̃i ⇒ µ̃m

i =
Ngi(T )

2T
.

Similarly, we get N1
i (T ) =

Ngi
(T )

2 and thus, as N1
i (T ) =

∫ T

0
λ0
gi(s)ds, we get

Ngi(T )

2
= µiT +

D∑
j=1

αm
i,j

∑
(t̃jn,κ

j
n)∈F̃j

T

ω(κj
n).

Once again, we have only one equation with D + 1 unknown parameters. We choose to assume that each parameter will
generate the same amount of events, leading to

µm
i =

Ngi(T )

2T (D + 1)
,

and

αm
i,j =

Ngi(T )

2T (D + 1)
∑

(t̃jn,κ
j
n)∈F̃j

T
ω(κj

n)
.

Replacing these values for µ̃m
i , µm

i , and αm
i,j into (5) ensures that the number of events’ expectation for the parametric model

matches the one from the observed process. The other kernel parameters are initialized using the method of moments on
the delay between events. Denoting by δti,jn the delay between tin and the time of occurrence of the last event in channel j
before tin

δti,jn = tin −max{t|t ∈ F j
T ,W < t < tin}. (6)

For the truncated Gaussian kernel, defined in Section 4.1, the initial mean mm
i,j and standard deviation σm

i,j are

mm
i,j =

1

Ngi(T )

∑
tin∈F i

T

δti,jn ,

σm
i,j =

√∑
tin∈F i

T
(δti,jn −mm

i,j)
2

Ngi(T )− 1
.

For the raised cosine kernel, detailed in the Section B.3, initial parameters um
i,j and sm

i,j are computed similarly

um
i,j = max (0,mm

i,j − σm
i,j),

sm
i,j = σm

i,j .

The benefits of this approach is supported by the numerical studies in Section B.3. The moment matching initialization
significantly improves convergences and lowers the risk of converging to irrelevant parameter values in the case of the raised
cosine, while it behaves comparably in the case of the truncated Gaussian, see Figure 7.
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For very noisy settings, where noisy events are very close to Hawkes process events in time, using the δti,jn defined in (6)
leads to poor performance of UNHaP. This is because δti,jn is then tiny, leading to a very small initial mean, from which the
solver has trouble converging to correct values. We circumvented this issue by computing δti,jn with a mean instead of a
maximum.

δti,jn = tin − 1

#{t ∈ F j
T ,W < t < tin}

∑
t∈Fj

T ,W<t<tin

t. (7)

A.3. Gradients of the UNHaP loss

This part present the derivation of the gradients of the loss function minimized by UNHaP for each parameter.

Gradient of the baseline. For any m ∈ {1, . . . , D}, we get

∂L̄G

∂µm
= 2TH1

mµm + 2∆H1
m

D∑
j=1

L∑
τ=1

ϕ∆
mj [τ ]Φ̃j(τ ;G)− 2

∑
(t̃mn ,κm

n )∈Fm
T

f1
m(κm

n )ρm
[
t̃mn
∆

]

Gradient of the noise baseline. For any m ∈ {1, . . . , D}, we get

∂L̄G

∂µ̃m
= 2TH0

mµ̃m − 2
∑

(t̃mn ,κm
n )∈Fm

T

f0
m(κm

n )

(
1− ρm

[
t̃mn
∆

])
.

Gradient of the excitation kernel parameters. For any tuple (m, l) ∈ {1, . . . , D}2, the gradient of ηml is

∂L̄G

∂ηml
=2∆H1

mµm

L∑
τ=1

∂ϕ∆
ml[τ ]

∂ηml
Φ̃l(τ ;G) + 2∆H1

m

D∑
k=1

L∑
τ=1

L∑
τ ′=1

ϕ∆
mk[τ

′]
∂ϕ∆

ml[τ ]

∂ηml
Ψ̃l,k(τ, τ

′;G)

+ 2∆

L∑
τ=1

∂ϕ∆
ml[τ ]

∂ηml
ϕ∆
ml[τ ] Ξ̃l(τ ;G)− 2

L∑
τ=1

∂ϕ∆
ml[τ ]

∂ηml
Φ̃l(τ ; F̃

m
T ).

Gradient of the mixture parameter. For any m ∈ {1, . . . , D} and for any u ∈ J1 , Ngm(T )K, we have

∂L̄G

∂ρm[u]
= 2∆

D∑
i=1

H1
i µi

L∑
τ=1

ϕ∆
im[τ ]

( G∑
s=1

zm[u] I{u = s− τ}
)

+ 2∆
∑
i,k

H1
i

L∑
τ=1

L∑
τ ′=1

ϕ∆
im[τ ]ϕ∆

ik[τ
′]

( G∑
s=1

z̃k[s− τ ′]zm[u] I
{
u = s− τ

})

+∆

D∑
i=1

L∑
τ=1

ϕ∆
im[τ ]2

( G∑
s=1

zm[u](zm[u]− 2z̃m[u]) I
{
u = s− τ

})

− 2

(
− µ̃m

∑
(t̃mn ,κm

n )∈F̃m
T

)

f0
i (κ

m
n ) I

{
u =

t̃mn
∆

}
+ µm

∑
(tmn ,κm

n )∈F̃m
T

)

f1
i (κ

m
n ) I

{
u =

t̃mn
∆

}

+

D∑
j=1

L∑
τ=1

ϕ∆
mj [τ ]

∑
(t̃mn ,κm

n )∈Fm
T

fm(κm
n )z̃j [u− τ ]I

{
u =

t̃mn
∆

}

+

D∑
i=1

L∑
τ=1

ϕ∆
im[τ ]

∑
(t̃in,κi

n)∈Fi
T

fi(κ
i
n)ρ

i [u+ τ ] zm [u] I
{
u =

t̃in
∆

− τ

})
.
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B. Additional Experiments
B.1. Sensitivity analysis of the alternate minimization parameter

The alternate minimization performed in UNHaP depends on a parameter b, the number of optimization steps done on the
Hawkes parameters between each update of ρ. It controls the trade-off between the number of gradients of the point process
parameters and the latent variable ρ. This part presents a sensitivity analysis of this parameter across several optimization
iterations.

We conduct the experiment as follows. We simulate two univariate marked Hawkes processes with intensity functions
defined as in (4), the first one corresponding to the non-noisy setting with µ̃ = 0.1 and the second one to the noisy setting
with µ̃ = 1. We set T = 1000 for both settings. We set ω(κ) = κ and f(κ) = 2κ 10≤κ≤1 and the g(κ) = 10≤κ≤1. We set
µ = 0.8, α = 1.4, imposing a high excitation phenomenon, and select ϕη to be a truncated Gaussian kernel with W = 1
and η = (m,σ) = (0.5, 0.1).

We conduct inference on the intensity function of the underlying Hawkes processes using UNHaP with ∆ = 0.01, W = 1
and varying the value of b in {10, 25, 50, 75, 100, 200}. The median and the 25%-75% quantiles (over ten runs) of the
estimation parameter are depicted in Figure 5 (left) according to the number of iterations and the size of b. The median
precision score (over ten runs) of the estimated ρ̂ recovery of the mixture structure parameter ρ is reported in Figure 5
(middle). In both cases, and those for the two noisy and non-noisy settings, the size of b reversely orders the accuracy at a
computational cost; see Figure 5 (right). However, the precision for each size b is close to each other after 10000 iterations.
Regarding the computational cost, we advise to select b = 200 for UNHaP.
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Figure 5. Inference comparison regarding the batch size of Hawkes parameters gradients between each ρ update. The error estimation on
Hawkes parameters (left), the Precision score on the ρ recovering (middle) and the associated computational time (right) are displayed for
non-noisy (top) and noisy settings (bottom).

B.2. Further experiments on the recovery of the mixture structure

Figure 6 displays the same experiment as in Section 4.1 but with two different noise level µ̃ = 0.5 and µ̃ = 1. These
additional experiments confirm and reinforce the claims made in the core paper regarding the recovery of the mixture
structure of Hawkes processes polluted by Poisson processes.

B.3. Moment Matching initialization

This section investigates the advantages of using the Moment Matching initialization introduced in Section A.2 over the
classical random ones. The simulation study is conducted as follows. Relying on an Immigration-Birth algorithm (Møller &
Rasmussen, 2005; 2006), we simulate one-dimensional marked events in [0, T ]×K with T = {100, 1000, 10000} from the
mixture process with the following intensity function
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Figure 6. Precision/Recall values for the estimation of ρ for different values of T w.r.t. the auto-excitation parameter α with uniform (top)
and linear (bottom) distributions on noisy marks for µ̃ = 0.5 (left) and µ̃ = 1. (right).

λ(t, κ;θ) =

(
µ+ α

∑
tn<t

ω(κn)ϕ(t− tn; η)

)
f1(κ) + µ̃ f0(κ),

where ω(κ) = κ and f1(κ) = 2κ 10≤κ≤1. We define two settings of mark noise distribution: the “linear” where
f0(κ) = 2(1− κ) 10≤κ≤1 and the “uniform” f0(κ) = 10≤κ≤1. We set µ = 0.8 and α = 1.4 and µ̃ = 0.5. Two excitation
kernels ϕ(·; η) are chosen. the first one is a truncated Gaussian, with η = (m,σ), corresponding to

ϕ(·; η) = 1

σ

γ
( ·−m

σ

)
F
(
W−m

σ

)
− F

(−m
σ

)10≤·≤W ,

where W is the kernel length and γ (resp. F ) is the probability density function (resp. cumulative distribution function) of
the standard normal distribution.The second one is a raised cosine density defined as
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Figure 7. Hawkes parameters estimation error using UNHaP with a raised cosine (left) and a truncated Gaussian (right) kernels, Moments
Matching (blue), and Random (orange) initializations for varying size sequences.

ϕ(·; η) = α

[
1 + cos

(
· − u

σ
π − π

)]
1u≤·≤u+2σ,
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with η = (u, σ). In contrast to the truncated Gaussian, the support of this kernel directly depends on its parameters and may
induce some instability in the optimization. For the truncated Gaussian kernel, we set η = (m,σ) = (0.5, 0.1) while we set
η = (u, σ) = (0.4, 0.1) for the raised cosine.

We compute UNHaP with both Moments Matching and Random initialization (with b = 200, ∆ = 0.01) and report the
error estimation (median over 10 runs) between the true parameters θ = {µ, α, η} and the estimated ones θ̂ = {µ̂, α̂, η̂},
i.e., ||θ̂ − θ||2.

While the moment matching improves the convergence results of the parameter over the random initialization in the case of
a raised cosine kernel, it behaves comparably in the case of a truncated Gaussian. This supports the average superiority of
the moment matching over the random initialization and should be used consistently.

B.3.1. BENCHMARKING INFERENCE AND COMPUTATION TIME IN AN UNMARKED SETTING

The benchmark presented in Section 4.2 is done on simulated events with marks. However, the benchmarked methods do
not account for marks, except for UNHaP, due to the scarcity of literature on marked point processes. To be exhaustive in
our comparison, we present additional benchmarks of UNHaP, FaDIn, Tripp, and Neural Hawkes on unmarked events here.

NLL

Non-noisy Noisy Computation time (s)

T 100 500 1000 100 500 1000 100 500 1000

UNHaP -0.18 -1.7 -1.62 1.18 -1.23 -1.20 29 31 35

FaDIn -0.19 -1.7 -1.62 1.2 -1.18 -1.17 3 3 3

Tripp 2.9 -0.26 -0.98 5.4 2 1.71 19 27 31

Neural Hawkes 0.57 -1.27 -1.46 2.9 1.87 1.66 20 149 281

Table 3. Median (over ten runs) Negative Log-Likelihood (NLL) on unmarked events in noisy and non-noisy settings for various models
and various sizes of events sequence. Bold numbers correspond to the best results. Computation time associated with the non-noisy
setting is also reported.

The events are simulated similarly to in Section 4.2. We simulate a Marked Hawkes process. Its intensity function is defined
as in (4). We also simulate a Poisson Process for the noisy events. The marks are not taken into account here. Therefore,
ω(·), f1(·) and f0(·) are a Dirac function in one, δ1(·). Similarly to the benchmark in Section 4.2, we set µ = 0.1, α = 1,
imposing a high excitation phenomenon, and select ϕ(·; η) to be a truncated Gaussian kernel with width W = 1 and
parameters η = (m,σ) = (0.5, 0.1). We benchmarked the methods on two noise settings: the non-noisy setting (µ̃ = 0.1)
and the noisy setting (µ̃ = 1). Once the data is simulated, the inference and testing of the methods are done as developed in
Section 4.2.

The median Negative Log-Likelihood and computational time are shown in Table 3. UNHaP demonstrates statistical
superiority over all methods in a noisy environment while exhibiting comparable performance to FaDIn in a non-noisy
context. This outcome aligns with expectations in a parametric approach when the utilized kernel belongs to the same family
as the one used for event simulation. It is essential to highlight that these results stem from analyzing a single (long) data
sequence, contributing to the subpar statistical performance of Neural Hawkes. It excels in scenarios involving numerous
repetitions of short sequences due to the considerable number of parameters requiring inference. From a computational time
standpoint, UNHaP performs similarly to Tripp, and significantly faster than Neural Hawkes. It is also slower than FaDIn,
which is expected due to the alternate minimization scheme, which performs repeated parameter inference using a procedure
similar to that of FaDIn. UNHaP offers an interesting alternative to existing methods in the context of unmarked noisy data
at a reasonable computation cost.

B.4. Application to physiological data

B.4.1. ECG

Electrocardiograms (ECG) measure the electrical activity of the heart. They are the gold standard for observing heartbeats.
Statistics derived from ECG, such as the heart rate (HR, average number of beats per minute) and the heart rate variability,
are central in diagnosing heart-related health issues, like arrhythmia or atrial fibrillation (Shaffer & Ginsberg, 2017). These
statistics require a robust estimate of the inter-beat interval duration. To automatically measure the inter-beat interval, the
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first step is to accurately detect heartbeats (Berkaya et al., 2018). This is usually done using knowledge-based methods
based on analyses of slope, amplitude, and width of ECG waves (Pan & Tompkins, 1985; Elgendi, 2013; Hamilton, 2002).
However, raw ECG signals usually contain noise, which can lead to spurious event detection unrelated to the biological
source of interest. These noisy events cause classical solvers to fail to recover the heart rate variability correctly. The usual
route to circumvent this problem is handmade. It applies a post-processing step to the detected events, for instance, by
thresholding them by amplitude or time-filtering them (Merdjanovska & Rashkovska, 2022). The design of such a step is
cumbersome, requires domain expertise, and does not generalize well. Indeed, ECG recordings often have considerable
inter-individual variability, so it has no “one-fits-all” value.

The procedure we developed circumvents this problem by using the structure of the detected event location to remove
spurious events. The underlying mixture model separates the data into events caused by the underlying Hawkes Process
and events caused by noise. In the following, we use UNHaP to post-process ECG events detected using CDL. Our results
showcase that UNHaP filters out noisy events, and the obtained Hawkes process parameters are consistent with the biological
ground.

Experimental Pipeline. Experiments are run on ECG data from the vitaldb dataset (Lee et al., 2022; Goldberger et al.,
2000). Nineteen 5-minute long ECG slots were isolated among 7 patients and downsampled from 500 Hz to 200 Hz to
reduce the computational cost. Figure 4 (A) shows a 3-second extract of an ECG slot. Each upward peak is a heartbeat.
This succession of events is very regular and almost periodic. Hence, it is appropriate to model it with an MMHP and
parameterize it with UNHaP. The downward peak at 1.5s is an example of an artifact. Below, we describe the event detection
and UNHaP parameterization, done on each ECG slot separately.

We run a CDL algorithm to detect events using the Python library alphacsc (Tour et al., 2018). Denote by X an ECG
slot, CDL decomposes it as a convolution between a dictionary of temporal atoms D and a temporal activation vector Z:
X = Z ∗ D + ε. Figure 4 (B1) shows the learned temporal atom on ECG slot 1, and Figure 4 (B2) shows the learned
activation vector Z from ECG window in Figure 4 (A). There is at least one non-zero activation for each beat. Z could,
therefore, be used as a proxy for event detection. In addition, noisy events are visible in Z: some are very close to beat
activations, and some are caused by the ECG artifact at 1.5s. Handcrafted thresholding methods would typically be used
here to remove noisy activations from Z. Instead, we process the raw activation vector Z, which is composed of sparse
events, with our UNHaP solver with a truncated Gaussian kernel. The solver separates the heartbeat Hawkes Process from
the noisy activations (Figure 4 (C2)) and estimates the inter-burst interval (Figure 4 (C1)). The mean (respectively the
standard deviation) of the parameterized truncated Gaussian ϕ estimates the mean inter-beat interval (respectively the heart
rate variability) on the ECG slot X . With this example, we see that UNHaP successfully detects the structured events from
the noisy ones, providing a good estimate of the inter-beat distribution.

Results. We compare the error made by several estimators of the inter-beat interval, including the developed pipeline
with FaDIn (Staerman et al., 2023) and UNHaP initialized with moment matching. We benchmark domain specific Python
libraries pyHRV (Gomes, 2024) and Neurokit (Makowski et al., 2021), which are tailored to ECG.

The mean inter-beat interval given by these estimators is compared to the ground truth, which is given in the dataset. We
average each estimator’s absolute and relative absolute errors over the nineteen ECG slots, see Table 4. UNHaP, pyHRV, and
Neurokit have equivalent performance. They all provide good heart rate estimates. Another interesting finding is that while
working with the same detected events, UNHaP vastly outperforms FaDIn. This proves the benefit of our mixture model to
separate structured events –here quasi-periodic– from spurious ones.

CDL + UNHaP CDL + FaDIn pyHRV Neurokit

AE (beats/min) 0.61±0.93 15.44±19.39 0.57±0.14 0.45±0.07
RAE 0.009±0.012 0.192±0.227 0.008±0.002 0.006±0.001

Table 4. Absolute Error (AE) and Relative Absolute Error (RAE) of the estimated average inter-beat interval (mean ± std) on the vitaldb
dataset.
B.4.2. GAIT

The study of a person’s manner of walking, or gait, is an important medical research field. Widespread pathologies, such as
Parkinson’s disease, arthritis, and strokes, are associated with an alteration of gait. Gait analysis is usually done by setting
an inertial measurement unit to a patient’s ankle and recording its vertical acceleration. These recordings can detect and
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infer essential features, such as steps, inter-step time intervals, and gait anomalies. We applied CDL + UNHaP to gait
inertial measurement unit recordings. Our pipeline detects steps and infers the inter-step time interval from raw gait inertial
measurement unit data (Truong et al., 2019). We found that CDL+UNHaP performs at least as well as domain-specific
methods.

Experimental pipeline The experimental pipeline is the same as described in Section 5. We run a CDL algorithm to
detect steps using the Python library alphacsc (Tour et al., 2018). The dictionary contains 1 atom of 1.5 seconds, and
its loss is minimized with a regularization factor of 0.5. Detected events are then fed to the UNHaP solver. The Hawkes
parameters are initialized with mean moment matching. The UNHaP gradient descent is done over 20,000 iterations, and the
mixture parameter ρ is updated every 1000 iterations.

Results We benchmarked our method to other estimators, similarly to Section 5 . We compare the error made by several
estimators of the inter-step interval, namely CDL + UNHaP developed in Section B.4.2 and CDL+FaDIn (Staerman et al.,
2023). We compare these estimators with Template Matching (Oudre et al., 2018), a method specifically tailored for
gait detection. Finally, the benchmark also includes the ECG Python libraries pyHRV (Gomes, 2024) and Neurokit
(Makowski et al., 2021), which were benchmarked in Section 5. The results are shown in Section B.4.2. They highlight that
as for ECG, UNHaP performs on par with Template Matching (Oudre et al., 2018), which is state-of-the-art for gait detection.
Additionally, contrary to previous Template Matching, UNHaP does not require pre-processing or application-specific
tailoring. UNHaP performs much better on gait than the ECG methods pyHRV and Neurokit, illustrating its universality. We
also stress that the proposed unmixing problem is critical to achieving good performance, as highlighted by the failure of
CDL+FaDIn, which has no unmixing.

CDL + UNHaP CDL + FaDIn pyHRV Neurokit Template Matching
MAE (seconds) 0.04 1.2 0.67 0.57 0.07

Table 5. Median Absolute Error (MAE) of the estimated average inter-step interval on gait.
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https://alphacsc.github.io/
https://github.com/PGomes92/pyhrv/tree/master
https://neuropsychology.github.io/NeuroKit/introduction.html

