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1 Extended results

1.1 Band behavior during emergence

Although we identified a deterministic and ordered chain of EEG events during induction and
maintenance of anesthesia, this chain did not extend to recovery. In particular, we found that
the θ and δ activity did not have a characteristic and systematic evolution during emergence.
This is illustrated in the average plots of the δ- and θ- relative powers in Figure S7A, where
emergence starts at time 25 minutes. For the incremented and 1.5% protocols (left and center
columns), during emergence, the relative delta power (green plot) increases to a value higher
than the baseline value, while the relative theta power increases very softly (yellow plot).
However, the constant 1% plot (right column) shows the opposite behavior: the relative delta
power stays very low, while the relative theta power increases drastically.

*Contributed equally.
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1.2 1/f-parameters have characteristic behavior

We separated the EEG power spectral density into two components: the oscillatory component
and the 1/f-component, with the form at

ct+fpt
where at, pt, and ct are estimated on sliding time

windows (Methods section 4.6, Fig. S7). The 1/f-component exponent pt had the same behavior
during baseline and induction across protocols (Fig. S7B). It started at a relatively stable value
between 1 and 1.4, before increasing rapidly after GA began. pt eventually stopped increasing,
and immediately decreased. The maximum value reached by pt was very close across protocols:
2.07, 2.09, and 2.02 for the incremented, 1.5%, and 1% protocol respectively. However, the
duration between start of GA and maximum pt varied across protocols: 12 minutes, 6 minutes
30 seconds, and 7 minutes for the incremented, 1.5%, and 1% protocol, respectively. The
decrease slope of pt varied across protocols. at and ct behaved globally the same as pt (Fig.
S7C-D).

Moreover, the dynamics of pt and the relative δ-power Pδ were weakly correlated (0.61 ±
0.22 Pearson correlation, see Supplementary section 1.2). We found that the 1/f exponent pt
was weakly linked to the δ relative power Pδ (0.61 ± 0.22 Pearson correlation, 0.58 ± 0.21
Spearman correlation, see Fig. S7F). On average, the correlation between pt and Pδ was higher
for the incremented protocol and the 1.5% protocol than for the 1% protocol.

1.3 Correlation of 1/-f and oscillatory EEG components

To study the independence of the two components of the spectral decomposition, we computed
the correlation of the energy estimated using the area under the 1/f and the oscillatory com-
ponents. For the latter, we summed the area under the θ and δ Gaussians. We found an
insignificant correlation (0.10 ± 0.2 for the incremented InjIso protocol, 0.11 ± 0.17 for the
InjIso = 1.5% protocol, and -0.24 ± 0.2 for the InjIso = 1% protocol), with an overall -0.002
± 0.25 (Fig. S5F). The present analysis suggests that the two components should be studied
separately and bring complementary information.

1.4 Correlation between IES and γ-rebound parameters

In Results section 2.4, we uncovered a phenomenon happening in the EEG γ frequency range.
We found that the area under the γ−power was correlated to the total time spent in IES (∆IES),
which we called cumulative IES duration. We now detail additional γ−rebound parameters and
the possible correlation with IES duration occurring during GA.
We define the γ-rebound duration (∆γ) as the time difference between the end of the last γ
spindle and the beginning of the first γ spindle during recovery. When we computed ∆γ in
recordings, we did not observe a statistical difference between the anesthesia protocols (Fig.
S8A). We next explored whether the γ-rebound durations could be correlated with ∆IES. To
address this question, we plotted the points (∆IES, ∆γ) for each recording containing a γ-
rebound. A linear regression y = ax + b (Fig. S8B) led to a = 0.58 and b = 3.69 with a
determination coefficient R2 = 0.2, revealing no obvious correlation between the γ-rebound
duration and IES duration. We note that in 8/23 recordings, the γ-rebound extended beyond

2



the end of the recording, preventing an accurate estimation of ∆γ.
To further study the possible correlation between the γ-rebound and ∆IES, we now introduce
how the γ-power pγ(k, t1, t2) is computed for recording k on the time interval [t1, t2]:

pγ(k, t1, t2) =
1

t2 − t1

∫ t2

t1

S2
k,γ(t)dt, (1)

where Sk,γ is the EEG signal of recording k bandpass filtered in 50−70Hz, which is the frequency
domain activated during γ rebounds. We recall the discretized version:

pγ(k, t1, t2) =
1

(t2 − t1)fS

t2∑
t=t1

S2
k,γ(t), (2)

where fS is the sampling frequency. We now introduce the recovery power precovγ during the
recovery phase for the gamma band as the power computed for Sγ(t) between the end (time
τ stopIso (k)) of anesthesia and the end (time τ stoprec (k))) of recording k as

precovγ (k) = pγ(k, τ
stop
Iso (k), τ stoprec (k)). (3)

To further investigate the possible correlation between the gamma recovery power precovγ (k) and
∆IES(k), (Fig. S8C), we performed a linear regression y = ax+ b and found a = 32.4, b = 84.5
and R2 = 0.5, confirming a weak linear dependency.
Finally, we define the normalized γ-recovery power between the end of anesthesia and the end
of recording as

pNrecov
γ (k) =

precovγ (k)

pγ(k, τ 0(k), τ startIso (k))
, (4)

where τ 0(k) is the beginning time of the EEG recording k. We performed a linear regression
y = ax+ b (Fig. S8D) leading to a = 0.17, b = 0.81, and R2 = 0.2, suggesting no correlation.
To conclude, we found no statistical correlation between the IES duration and γ−rebound
durations, or IES duration and the γ−rebound energy, normalized or not.

1.5 EEG γ-rebound is not EMG contamination

During the γ-rebound described in Results section 2.4, EEG γ bursts were synchronized with
EMG bursts (Fig. S10A-B). But spectral decomposition of these signals showed key differences
(Fig. S10C-D). The EEG power spectrum was much more powerful, with power going up to
200 µV as opposed to 20 µV for the EMG. Moreover, during EEG bursts, the γ activity was in
a narrow frequency domain, around 60 Hz. On the contrary, in EMG bursts, the entire 50−100
Hz range was active. Therefore, EMG contamination was not the cause of the high-power
activity of the γ-rebound EEG. However, because of their synchronicity, we hypothesize that
EEG and EMG bursts are linked, possibly caused by a common phenomenon that has yet to
be unveiled.
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1.6 δ disappearance predicts the emergence of suppressions several
minutes in advance

We investigated the dynamics of the δ- and θ- rhythms and their roles in predicting BS appear-
ance. Interestingly, we found that the δ-rhythm disappearance could anticipate the appearance
of BS (Fig.S9).
To obtain a predictive estimate of the arrival of BS, we computed the normalized power Pδ of
a sub-delta band in the range 2−4 Hz (see eq. 7). We found that when Pδ leaves for the first
time a region where its value exceeds a threshold Tδ = 0.15, BS appear in average with a delay
of few minutes (Fig. S9A), in 81% of the cases. Interestingly, this delay was, on average, 4.5
minutes for the 1.5% protocol, and 1.9 min for the incremented protocol (Fig. S9B).

1.7 Repeated isoflurane exposure does not induce group differences
in response to anesthesia

We noticed that one individual mouse could respond differently to anesthesia when anesthetized
several times. We however found no evidence that this variability was a consequence of repeated
exposure to isoflurane. For instance, two mice received the constant 1% protocol three times
in a row. Interestingly, the intra-individual response varied greatly. While the first mouse had
a cumulative IES duration of 0 min, 0 min and then 1.32 min (suggesting that exposure to
isoflurane increases isoflurane sensitivity), the second mouse had a cumulative IES duration
of 2.4 min, 0.85 min, and then 1.5 min (suggesting that isoflurane exposure does not have a
strong impact on isoflurane sensitivity). We therefore found no general trend as to whether
isoflurane exposure history increases or decreases isoflurane sensitivity over time. We further
evaluated this question by comparing the cumulative IES duration of two groups of recordings
undergoing the incremented protocol. Indeed, the cumulative IES duration can be used as
a quantification of sensitivity to anesthesia. In the first group, the mice were naive, they
had not been anesthetized before (except during surgical implantation, weeks prior to the
experiment) (n=4, mean cumulative IES duration of 4.7 ± 2.3 min). In the second group, the
mice had recently been anesthetized using the constant 1.5% protocol (n=4, mean cumulative
IES duration of 2.8 ± 2.1 min). The Mann-Whitney U rank two-sided test returned a p-value
of 0.47, meaning we cannot reject its null hypothesis, which is that the two groups have the
same underlying distribution. We conclude that in our recordings, previous isoflurane exposure
does not predict the response to isoflurane.
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2 Extended methods

2.1 Choice of the threshold value to segment IES

IES detection relies on the choice of a threshold value TIES. Choosing this threshold depends on
the amplitude of the EEG signal, which can vary with the type and position of the electrodes,
and with inter-individual variability [1]. We describe here how we selected this threshold and
adapted the value for each recording. We express the threshold for IES as

TIES = rIESRMSEEG, (5)

where RMSEEG is the Root Mean Square (RMS) of the EEG signal computed over the entire
duration of each recording and the parameter rIES has to be determined. If rIES is too small,
then IES epochs are not correctly detected (Fig. S1A). If rIES is a relevant value, then IES
epochs are correctly detected (Fig. S1B). And if rIES is too big, then non-IES epochs are
wrongly detected as IES (Fig. S1C). To determine rIES, we first varied rIES between 0 and
1.5 , and for each rIES value, we ran the IES detection algorithm (Methods) during the entire

duration of each recording. For each rIES and each recording k, we computed the total time ∆̂k
IES

of detected IES that we plotted versus rIES (Fig. S2A1-A2) after we subdivided the recordings
into two subgroups:

1. G1 with IES (n1 = 26),

2. G2 with no IES (n2 = 4).

The division in G1 and G2 was done by visually inspecting the data. The average curves for
each subgroup are defined by

∆̂1(rIES) =
1

n1

∑
k∈G1

∆̂k
IES(rIES) (6)

∆̂2(rIES) =
1

n2

∑
k∈G2

∆̂k
IES(rIES), (7)

where n1 (resp. n2) is the number of recordings in G1 (resp. G2), and the relative threshold
values rIES were between 0 and 1.5, with an increment of 0.05. The result is plotted with the
standard deviation in Fig. S2B1-B2. For mice in G1, the average curve ∆̂1(rIES) follows a fast
increase, followed by a region with a much smaller slope value that we refer to as plateau PlG1

(red in Fig. S2B1). The curve ends with another fast increase. In contrast, the average curve

∆̂2(rIES) stays equal to zero, before rapidly increasing (Fig. S2B2).

We then approximated the first derivative of the average curve ∆̂1 :

∆̂′(r′n) =
∆̂IES(rn+1)− ∆̂IES(rn)

rn+1 − rn
, (8)
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with r′n = rn+rn+1

2
.

The plateau PlG1 is visible as a well in the first derivative of ∆1 (Fig. S2C) and provides an
admissible range for the relative threshold rIES, i.e. a set of values with which IES detection is
satisfactory. To minimize false positives (IES wrongly detected), we chose the relative threshold
at the left bound of the plateau, r∗IES = 0.7. We note that with this value, no IES are wrongfully
detected in group G2 (Fig. S2B2).

2.2 Influence of the correcting factor ct on the 1/f-decomposition

In Methods sections 4.5.1 and 4.5.2, we decomposed the power spectrum into 1/f and oscillatory
components on sliding time windows. In this section, we discuss the influence of the parameter
ct on the 1/f -component estimation. For that purpose, we compared the fits y1(f) =

a
c+fp and

y2(f) =
a
fp in their capacity to approximate the 1/f -component in the frequency domain. The

parameter estimation for a, c and p for y1 and a, p for y2 is described in the Methods section
4.5.1. These fits are performed for all recordings in our dataset and computed over successive
time windows with a width of 60 seconds and an overlap of 30 seconds (Fig.S3).
We now describe how we evaluate the local error made by each fitted function on a sliding time
window: The 1/f-component of the EEG signal ỹkt,w is estimated from the time window Ww(t)
of recording k by parameterizing y1 (resp. y2) ỹkt,w, resulting in yk1,t,w and yk2,t,w respectively.
The local normalized error made by y1 on time window Ww(t) of recording k is defined by

Err(ỹ, y1, t, w, k) =

∫∞
0
(ỹkt,w(f)− yk1,t,w(f))

2df∫∞
0

ỹkt,w
2df

, (9)

and the local normalized error made by y2 on Ww(t) of recording k is:

Err(ỹ, y2, t, w, k) =

∫∞
0
(ỹkt,w(f)− yk2,t,w(f))

2df∫∞
0

ỹkt,w
2df

. (10)

The discretized version of the local normalized error is given by:

Err(ỹ, yj, t, w, k) =

⌊M
ϵ ⌋∑

l=⌊m
ϵ ⌋
(ỹkt,w(ϵl)− ykj,t,w(ϵl))

2

⌊M
ϵ ⌋∑

l=⌊m
ϵ ⌋

ỹkt,w(ϵl)
2

, (11)

where j ∈ {1, 2}, M (resp. m) is the upper (resp. lower) bound of the frequency range on
which we extracted the 1/f - component, and ϵ is the frequency increment. Here, m = 0.2 Hz,
M = 15 Hz, and ϵ = 0.1 Hz. The local normalized errors made by y1 and y2 along one recording
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(Fig. S4) are used to estimate the final errors (eq. 11) over all fitted time windows in the entire
dataset: it is computed by

Err(ỹ, yj) =
1

N

N∑
k=1

1

Nk

Nk−1∑
m=0

Err(ỹ, yj, wm+
w

2
, w, k), (12)

where j ∈ {1, 2}, N is the number of recordings in the dataset, Nk is the number of sliding
time windows in recording k, w is the width of the sliding time windows. Here, N = 30 and
w = 1 minute. We found the average normal errors (computed on all our recordings) are given
by

Err(ỹ, y1) = 0.068± 0.02

Err(ỹ, y2) = 1.038± 0.44.

To conclude, according to this error criteria, the y1 fit performs better than the y2 fit with a
factor of 15, thus confirming the relevance of the correction term ct.

3 Supplementary figures

Figure S1: IES detection depends greatly on the threshold. EEG showing an IES in
the range 10 − 13 seconds. The IES is detected using the method described in section 2.1 for
rIES = 0.2 (A), rIES = 0.7 (B), rIES = 1.5 (C).
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Figure S2: Choice of relative threshold rIES for IES detections. Detected IE duration
∆̂k

IES versus relative threshold rIES for recordings with IES (A1), and recordings without IES
(A2). (B1) Average curve (full) with the standard deviation (blue area) of the curves presented
in (A1). (B2) average with the standard deviation of curves in (A2). (C) Derivative of the
mean detected IE duration ∆̂1

IES. The admissible range for the relative threshold rIES is the
slowest increase region in (B1), associated with a well (C). We chose the value r∗IES = 0.7
(red), located at the left of the well.
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Figure S3: 1/f-component in the frequency space. (A) The power spectral density

(dark blue) is fitted by an estimate (̃y) computed over one minute (IRASA 1/f component

extraction in light blue), y1 =
a

c+fp (red) and y2 =
a
fp . (̃y) (green). The parameters a, c, and p

are estimated in the Methods section. (B) linear scale.

Figure S4: Local errors associated with y1 = a
c+fp and y2 = a

fp decomposition, com-

puted over the EEG recording. (A) log and (B) linear scale.
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Figure S5: Estimation of oscillatory and fractal parameters on a time window. (A)
Input window of the signal. (B) Power Spectral Density of the input signal. (C) Estimation of
the fractal component and the fractal parameters at, pt, ct. (D) Estimation of the oscillatory
component. (E) Decomposition of the oscillatory component in Gaussians and parameter
extraction of the θ- and δ- rhythms. (F) Correlation between the areas under the fractal and
oscillatory components.
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Figure S6: EMG and associated spectrogram over an entire recording. Loss of Move-
ment (LOM), indicated by the first vertical black arrow, and Return of Movement (ROM),
indicated by the second black arrow.
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Incr. InjIso InjIso = 1.5% InjIso = 1% All p-value

τdecayθ − τ startIso 1.3 ± 1.4 0.9 ± 0.7 0.6 ± 0.3 1 ± 1.1 6.6× 10−6

τ appδ − τdecayθ 6.0 ± 1.8 2.4 ± 1.4 3.1 ± 2.4 4 ± 2.5 3.5× 10−5

τdispθ − τ appδ 6.4 ± 3.8 3.5 ± 1.1 2.6 ± 2.5 4.6 ± 3.4 4.6× 10−6

τdispδ − τdispθ 3.4 ± 2.1 4.4 ± 1.9 3.6 ± 5.3 3.8 ± 3.1 8.2× 10−6

τS − τdispδ 1.9 ± 1.8 4.5 ± 3.1 6.0 ± 0.3 3.2 ± 2.7 9.9× 10−5

Table 1: Time difference between key EEG events (mean ± std in minutes), and
p-value of the one-sided Wilcoxon signed-rank test.
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Figure S7: Trajectories of spectral parameters for anesthesia protocol: relative pow-
ers and 1/f- component at

ct+fpt
. (A) Relative δ-power (dark green) and relative θ-power

(yellow). (B) exponent pt, (C) intercept at and (D) correction term ct. (E) Distribution of
Pearson and Spearman correlations between pt and Pδ. Error bands indicate the 95% confi-
dence intervals computed using the t-distribution.

13



Figure S8: Statistical parameters associated with the γ−rebound. (A) The γ-rebound
duration is not statistically different among the three anesthesia protocols (two-sided Wilcoxon-
rank U test). (B) γ-rebound duration is not linearly correlated to IES duration. Recovery γ
power (C) and normalized recovery γ-power (D) are not linearly correlated to IES duration.
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B Duration distribution of pre-IES state 
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Figure S9: δ-rhythm disappearance precedes IES by several minutes. (A) Estimation
of δ-rhythm disappearance time τdispδ and IES time τS. (B) Distribution of the time difference

between τdispδ and τS for two protocols.
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Figure S10: Magnification of EEG and EMG during a γ-rebound. (A) EEG signal.
(B) EMG signal. (C) EEG spectrogram. (D) EMG spectrogram. The EMG spectrogram
differs greatly from the EEG spectrogram, showing that the EEG γ-rebound is not EMG
contamination.
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